Journal of Radioanalytical and Nuclear Chemistry

, Volume 173, Issue 2, pp 365–376 | Cite as

Elemental composition studies of fugitive and ambient air dust particulates from a thermal power station by instrumental neutron activation analysis

  • M. N. Ambulkar
  • N. L. Chutke
  • A. N. Garg


In order to assess the source of pollutants and the atmosphere quality in and around a thermal power plant, fugitive dust particulates from seven different locations and ambient air dust from six locations have been analyzed for 32 elements (As, Au, Ba, Br, Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Ga, Hg, Hf, K, La, Lu, Mg, Mn, Na, P, Rb, Sb, Sc, Se, Ta, Tb, Te, Th, W and Yb) by employing instrumental neutron activation analysis (INAA). The method involves the irradiation of samples and comparator standards in a thermal neutron flux range of 1012−1013n·cm−2·s−1 in a nuclear reactor for 10 min and 1 day followed by high resolution γ-spectrometry. Wide differences have been observed in the mean elemental concentrations of Fe, Co, Br, Mn, As, P. Ba and Cu in fugitive and ambient dust particulates coliected from these different locations. Further, a comparison of the elemental contents of the dust particulates from the plant with environmental standards (Urban Particulate Matter, Coal Fly Ash, Vehicle Exhaust and Coal) show significantly lower or comparable amounts of toxic and pollutant elements in the environmental samples.


Elemental Composition Dust Particulate Instrumental Neutron Activation Analysis Thermal Power Neutron Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. RATHORE, T. A. SIHORWALA, H. V. TILWANKAR, D. J. KILLEDAR, Indian J. Environ. Prot., 11 (1991) 194.Google Scholar
  2. 2.
    S. KUMAR, Indian J. Environ. Prot., 7 (1987) 2.Google Scholar
  3. 3.
    S. SADASIVAN, B. S. NEGI, Sci. Total Environ., 103 (1991) 151.Google Scholar
  4. 4.
    C. GARCIA-OLALLA, L. C. ROBLES, M. T. ALEMONY, A. J. ALLER, Anal Chim. Acta., 247 (1991) 19.Google Scholar
  5. 5.
    J. P. WILLIS, R. J. HART, J. Trace Microprobe Tech., 3 (1985) 109.Google Scholar
  6. 6.
    C. M. ROJAS, L. FIGUEROA, K. H. JANSSENS, P. E. VAN ESPEN, F. C. ADAMS, R. E. VAN GRIEKEN, Sci. Total Environ., 91 (1990) 251.Google Scholar
  7. 7.
    C. F. WANG, T. T. MIAU, J. Y. PERNG, S. J. YEH, P. C. CHIANG, H. T. TSAI, M. H. YANG, Analyst, 114 (1989) 1067.Google Scholar
  8. 8.
    M. A. B. POUGNET, M. PEISACH, L. A. RODGERS, C. A. PINEDA, J. Radioanal. Nucl. Chem., 119 (1987) 441.Google Scholar
  9. 9.
    H. A. Das, A. FAANHOF, A. A. VANDER SLOTT, Environmental Radioanalysis, Elsevier, Amsterdam, 1983, p. 298.Google Scholar
  10. 10.
    J. TÖGLYESSY, E. H. KLEHR, Nuclear Environmental Chemical Analysis, Ellis Harwood Ltd. West Sussex, 1987, p. 185.Google Scholar
  11. 11.
    N. I. WARD, S. A. KERR, T. OTSUKA, J. Radioanal. Nucl. Chem., 114 (1987) 113.Google Scholar
  12. 12.
    J. A. ADEPETU, O. I. ASUBIOJO, F. Y. ISKANDER, T. L. BAUER, J. Radioanal. Nucl. Chem., 121 (1988) 141.Google Scholar
  13. 13.
    J. J. FARDY, G. D. MCORIST, Y. J. FARRAR, J. Radioanal. Nucl. Chem., 133 (1989) 217.Google Scholar
  14. 14.
    N. I. WARD, Sci. Total Environ., 93 (1990) 393.Google Scholar
  15. 15.
    J. MORSELLI, S. ZAPPOLI, M. GALLORINI, E. RIZZIO, Analyst, 113 (1988) 1575.Google Scholar
  16. 16.
    J. BOGEN, Atmos. Environ., 7 (1973) 1117.Google Scholar
  17. 17.
    L. TRANVAN, D. K. TEHARANI, J. Radioanal. Nucl. Chem., 135 (1989) 435.Google Scholar
  18. 18.
    A. N. GARG, H. K. WANKHADE, R. K. S. DOGRA, R. SHANKAR, Sci. Total Environ., 67 (1987) 165.PubMedGoogle Scholar
  19. 19.
    H. K. WANKHADE, A. N. GARG, Indian J. Environ. Health, 31 (1989) 125.Google Scholar
  20. 20.
    R. G. WEGINWAR, A. N. GARG, J. Radioanal. Nucl. Chem., 162 (1992) 381.Google Scholar
  21. 21.
    M. N. AMBULKAR, N. L. CHUTKE, A. N. GARG, A. L. AGGARWAL, Sci. Total Environ., in press.Google Scholar
  22. 22.
    I. M. H. PAGDEN, G. J. PEARSON, J. M. BEWERS, J. Radioanal. Chem., 8 (1971) 373.Google Scholar
  23. 23.
    R. G. WEGINWAR, D. L. SAMUDRALWAR, A. N. GARG, J. Radioanal. Nucl. Chem., 133 (1989) 317.Google Scholar
  24. 24.
    L. PAPA, Environmental Health Criteria for Barium, EHC 107, International Programme in Chemical Safety, World Health Organization, Geneva, 1990, p. 121.Google Scholar
  25. 25.
    F. J. FLANAGAN, Geochim. Cosmochim. Acta, 37 (1973) 1189.Google Scholar
  26. 26.
    R. DYBCZYNSKI, A. TUGSAVUL, O. SUSCHNY, Geostand. Newslett., 3 (1979) 61.Google Scholar
  27. 27.
    M. SOMA, H. SEYAMA, K. OKAMOTO, Talanta, 32 (1985) 177.Google Scholar
  28. 28.
    S. T. CUFFE, R. W. GERSTLE, Emission of coal fired Power Plants, Washington, DC, US Department of Health, Education and Welfare, Government Printing Office (Publication No. 999-Ap-35).Google Scholar
  29. 29.
    E. BERMAN, Toxic Metals and Their Analysis, Heyden and Sons Ltd., London, 1980, p. 45.Google Scholar
  30. 30.
    C. K. BLUM, Scot. Med. J., 7 (1962) 478.PubMedGoogle Scholar
  31. 31.
    M. A. SCHROEDER, in: Essays in Toxicology, W. J. HAYES (Ed.) Academic Press, New York, 1973.Google Scholar
  32. 32.
    E. J. UNDERWOOD, Trace Element in Human and Animal Nutrition, 3 ed., Academic Press, New York, 1971, p. 443.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • M. N. Ambulkar
    • 1
  • N. L. Chutke
    • 1
  • A. N. Garg
    • 1
  1. 1.Department of ChemistryNagpur UniversityNagpur(India)

Personalised recommendations