Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 173, Issue 2, pp 339–349 | Cite as

Reduction of the quinizarin molecule in methanol as studied by γ-radiolysis

  • R. Krasiukianis
  • J. Mayer
Article

Abstract

The disproportionation of quinizarin semiquinones in methanol solutions of different pH has been investigated using the γ-radiolysis method. After60Co-irradiation of deaerated solutions the corresponding changes in the optical absorption spectra were recorded. In solutions of different pH the semiquinones disproportionate to give appropriate forms of quinizarin hydroquione which can react with oxygen to regenerate the parent compound. In neutral and acidic methanol the corresponding form of hydroquinone (1,4,9,10-tetrahydroxyanthracene) undergoes a transformation leading to formation of 9,10-dihydroxy-2,3-dihydro-1,4-anthraquinone which is unreactive towards oxygen.

Keywords

Oxygen Methanol Physical Chemistry Inorganic Chemistry Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. NETA, in: The Chemistry of Quinonoid Compounds, Vol. 2, S. PATAI and Z. RAPPOPORT (Eds), Wiley, New York, 1989, p. 879.Google Scholar
  2. 2.
    T. MUKHERJEE, E. J. LAND, A. J. SWALLOW, P. M. GUYAN, J. M. BRUCE, J. Chem. Soc., Faraday Trans. I, 84 (1988) 2855.Google Scholar
  3. 3.
    J. PERKOWSKI, J. L. GEBICKI, R. ŁUBIS, J. MAYER, Radiat. Phys. Chem., 33 (1989) 103.Google Scholar
  4. 4.
    J. PERKOWSKI, J. MAYER, J. Radioanal. Nuclear Chem., 132 (1989) 269.Google Scholar
  5. 5.
    J. MAYER, R. KRASIUKIANIS, Radiat. Phys. Chem., 37 (1991) 273.Google Scholar
  6. 6.
    D. W. JOHNSON, G. A. SALMON, Radiat. Phys. Chem., 10 (1977) 294.Google Scholar
  7. 7.
    J. BARBOSA, E. BOSCH, R. CARRERA, Talanta, 32 (1985) 1077.Google Scholar
  8. 8.
    B. E. HULME, E. J. LAND, G. O. PHILLIPS, J. Chem. Soc., Faraday I, 68 (1972) 1992.Google Scholar
  9. 9.
    T. MUKHERJEE, A. J. SWALLOW, P. M. GUYAN, J. M. BRUCE, J. Chem. Soc., Faraday I, 86 (1990) 1483.Google Scholar
  10. 10.
    E. J. LAND, T. MUKHERJEE, A. J. SWALLOW, J. M. BRUCE, J. Chem. Soc., Faraday I, 79 (1983) 405.Google Scholar
  11. 11.
    A. V. EL'TSOV, O. P. STUDZINSKII, V. M. GREBENKINA, Usp. Khim., 46 (1977) 185.Google Scholar
  12. 12.
    N. S. ALLEN, J. F. MCKELLAR, B. M. MOGHADDAM, G. O. PHILLIPS, Chem. Ind. (London), 17 (1979) 593.Google Scholar
  13. 13.
    S. M. BLOOM, R. F. HUTTON, Tetrahedron Lett. (1963) 1993.Google Scholar
  14. 14.
    V. M. DIBROVA, V. G. KLIMENKO, R. N. NURMUKHAMETOV, D. N. SHIGORIN, Zh. Prikl. Spektr., 53 (1990) 242.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • R. Krasiukianis
    • 1
  • J. Mayer
    • 1
  1. 1.Institute of Applied Radiation ChemistryTechnical UniversityLódz(Poland)

Personalised recommendations