Advertisement

Lasers in Medical Science

, Volume 6, Issue 4, pp 425–428 | Cite as

Activity of haematoporphyrin derivative photoproduct in photodynamic therapy in vivo

  • L. Giniūnas
  • R. Rotomskis
  • V. Smilgevičius
  • A. Piskarskas
  • J. Didžiapetrienė
  • L. Bloznelytė
  • L. Griciūtė
Article

Abstract

Illumination of haematoporphyrin derivative in phosphate-buffered solutions causes the formation of a stable photoproduct with new absorption and fluorescence bands. We report data showing photodynamic activity of the photoproduct. Praestomic tumour OJ-5, carcinosarcoma W-256 (mice) and adenocarcinoma Akatol of colon (rats) have been used. Dynamics of tumour growth, life span of animals and morphological changes of tumour tissues have been the main criteria used to show the photoproduct activity.

Key words

Photodynamic therapy Tumour Haematopor-phyrin derivative Photoproduct Laser illumination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pottier R, Truscott TG. The photochemistry of haematoporphyrin and related systems.Int J Radiat Biol 1986,50:421–52Google Scholar
  2. 2.
    Gamaleya NF, Mikhalkin IA. Light therapy of tumours using photosensitizers.Eksperimental'naya onkologiya (USSR) 1988,10:9–16Google Scholar
  3. 3.
    Jonušauskas G, Kapočiūtė R, Rotomskienė J et al. Effect of light fluence on absorption spectra of hematoporphyrin diacetate in solution.Abstract of 2nd congress of the European Society for Photobiology, Italy, 1987:119Google Scholar
  4. 4.
    Rotomskienė J, Kapočiūtė R, Rotomskis R et al. Light-induced transformation of hematoporphyrin diacetate and hematoporphyrin.J Photochem Photobiol (Biology) 1988,2:373CrossRefGoogle Scholar
  5. 5.
    Rotomskienė J, Aartsma T, Dubbelman TMAR, Rotomskis R. The spectral properties of hematoporphyrin photoproduct.Liet fiz rink 1989,29:477–9 (in Russian; translated inSov Phys Collection)Google Scholar
  6. 6.
    Kinoshita S, Seki T, Tian Fu Liu, Kushida T. Fluorescence of hematoporphyrin in living cells and in solutions.J Photochem Photobiol (Biology) 1988,2:195CrossRefGoogle Scholar
  7. 7.
    Roeder B, Wabnitz H. Time-resolved fluorescence spectroscopy of hematoporphyrin, mesoporphyrin, pheophorbide-a and chlorin eσ in ethanol and aqueous solution.J Photochem Photobiol (Biology) 1987,1:103CrossRefGoogle Scholar
  8. 8.
    Moan J, Kessel D. Photoproducts formed from photophrin-II in cells.J Photochem Photobiol (Biology) 1988,1:429CrossRefGoogle Scholar
  9. 9.
    Moan J, Western A, Rimington C. Photomodification of porphyrins in biological systems. In: Moreno G (ed)NATO ASI Series, Photosensitisation Vol H15. Berlin:Springer-Verlag, 1988:407Google Scholar
  10. 10.
    Byrne CJ, Morshallsay LV, Ward AD. The structure of the active material in hematoporphyrin derivative.Photochem Photobiol 1987,46:575PubMedGoogle Scholar
  11. 11.
    Kessel D, Cheng M-L. Biological and biophysical properties of the tumour-localizing component of HPD.Canc Res 1985,45:3053Google Scholar
  12. 12.
    Moan J. The photochemical yield of singlet oxygen from porphyrins in different states of aggregation.Photochem Photobiol 1984,39:445CrossRefGoogle Scholar
  13. 13.
    Egorov SYu, Krasnovsky AA. Generation of singlet molecular oxygen (1O2) by monomeric and aggregate forms of porphyrins.Abstract of Intern Conference on Photodynamic Therapy, Sofia 1989:34Google Scholar
  14. 14.
    Jori G, Spikes JD. Photochemistry of porphyrins. In: Smith KC (ed)Topics in Photomedicine. Berlin:Springer Verlag, 1983:183–319Google Scholar

Copyright information

© Baillière Tindall 1991

Authors and Affiliations

  • L. Giniūnas
    • 1
  • R. Rotomskis
    • 1
  • V. Smilgevičius
    • 1
  • A. Piskarskas
    • 1
  • J. Didžiapetrienė
    • 2
  • L. Bloznelytė
    • 2
  • L. Griciūtė
    • 2
  1. 1.Laser Research CentreVilnius UniversityVilniusLithuania
  2. 2.Scientific Research Institute of OncologyVilniusLithuania

Personalised recommendations