Skip to main content
Log in

Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The chemistry of aqeous ozone, O3, and ozonide, O 3 , is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The ozonide anion is a free radical that is too unstable in aqueous media to be studied by classical means. Some properties of the aqueous ozonide radical ion have been elucidated earlier by means of the pulse radiolysis technique. The OH catalyzed chain decomposition of aqueous ozone, 2O3→3O2, has not yet been rationalized in terms of a detailed mechanism. We have investigated the reaction mechanisms using pulse radiolysis in combination with a high pressure cell, rapid mixing and numerical simulation of the experiments. This study makes it possible to give a detailed description of the reaction mechanisms in terms of uni- and bimolecular reactions and provides kinetic data sufficient for computer simulations of aqueous O3/O 3 chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. EVANS (Ed.), Ozone in Water and Waste Water Treatment, Ann Arbor, MI, 1972.

  2. R. G. RICE, A. NETZER (Eds), Handbook of Ozone Technology and Application, Ann Arbor, MI, 1982.

  3. W. J. MASSCHLEIN (Ed.), Ozonation Manual for Water and Wastewater Treatment, Wiley, New York, 1982.

    Google Scholar 

  4. L. NEWMAN (Ed.), Gas-Liquid Chemistry of Natural Walters Abstracts of papers presented at Brookhaven National Laboratory, April 1984, BNL 51757 Vols 1 and 2.

  5. J. HOIGNE, H. BADER, Water Res., 17 (1983) 173 and 185.

    Google Scholar 

  6. J. HOIGNE, H. BADER, W. R. HAAG, J. STAEHELIN, Water Res., 19 (1985) 993.

    Google Scholar 

  7. J. STAEHELIN, J. HOIGNE, 5th Ozon-Weltkongress, Wasser Berlin 1981, Colloquium Verlag, West Berlin, 1981, p. 623.

    Google Scholar 

  8. M. TERAMOTO, S. IMAMURA, N. YATAGAI, Y. NISHIKAWA, H. TERANISHI, J. Chem. Eng. Japan, 14 (1981) 383.

    Google Scholar 

  9. J. A. ROTH, D. E. SULLIVAN, Ozone Sci. Eng., 5 (1983) 37.

    Google Scholar 

  10. J. WEISS, Faraday Soc., 31 (1935) 685.

    Google Scholar 

  11. M. PELEG, Water Res., 10 (1976) 361.

    Google Scholar 

  12. J. HOIGNE, H. BADER, Water Res., 10 (1976) 377.

    Google Scholar 

  13. E. J. HART, K. SEHESTED, J. HOLCMAN, Anal. Chem., 55 (1983) 46.

    Google Scholar 

  14. D. BAHNEMANN, E. J. HART, J. Phys. Chem., 86 (1982) 252.

    Google Scholar 

  15. K. SEHESTED, J. HOLCMAN, E. J. HART, J. Phys. Chem., 87 (1983) 1951.

    Google Scholar 

  16. J. HOIGNE, H. BADER, Wasser, 48 (1977) 283.

    Google Scholar 

  17. K. SEHESTED, J. HOLCMAN, E. J. HART, to be published.

  18. K. SEHESTED, J. HOLCMAN, E. BJERGBAKKE, E. J. HART, J. Phys. Chem., 88 (1984) 4144.

    Google Scholar 

  19. R. F. HAMPSON, Chemical Kinetic and Photochemical Data Sheet for Atmospheric Reactions. Report No. FAA-EE-80-17, 1980.

  20. R. E. BÜHLER, J. STAEHELIN, J. HOIGNE, J. Phys. Chem., 88 (1984) 2560.

    Google Scholar 

  21. J. STAEHELIN, R. E. BÜHLER, J. HOIGNE, J. Phys. Chem., 88 (1984) 5999.

    Google Scholar 

  22. D. S. GORBENKO-GERMANOV, I. V. KOZLOVA, Dokl. Akad. Nauk. SSR, 210 (1973) 851.

    Google Scholar 

  23. D. S. GORBENKO-GERMANOV, I. V. KOZLOVA, Zh. Fiz. Khim., 48 (1974) 166.

    Google Scholar 

  24. L. FORNI, D. BAHNEMANN, E. J. HART, J. Phys. Chem., 86 (1982) 255.

    Google Scholar 

  25. B. H. J. BIELSKI, J. M. GEBICKI, Advances in Radiation Chemistry, Vol. 2, M. BURTON, J. L. MAGEE (Eds), Wiley-Interscience, New York, 1970, p. 248.

    Google Scholar 

  26. G. CZAPSKI, Annu. Rev. Phys. Chem., 22 (1971) 171.

    Google Scholar 

  27. K. SEHESTED, J. HOLCMAN, E. BJERGBAKKE, E. J. HART, J. Phys. Chem., 88 (1984) 269.

    Google Scholar 

  28. U. K. KLÄNING, K. SEHESTED, T. WOLFF, J. Chem. Soc. Faraday Trans. I, 80 (1984) 2969.

    Google Scholar 

  29. U. K. KLÄNING, K. SEHESTED, J. HOLCMAN, J. Phys. Chem., 89 (1985) 760.

    Google Scholar 

  30. H. CHRISTENSEN, K. SEHESTED, Radiat. Phys. Chem., 16 (1979) 183.

    Google Scholar 

  31. K. SEHESTED, J. HOLCMAN, E. BJERGBAKKE, E. J. HART, J. Phys. Chem., 86 (1982) 2066.

    Google Scholar 

  32. G. E. ADAMS, W. J. BOAG, B. D. MICHAEL, Proc. Roy. Soc. A, 281 (1966) 321.

    Google Scholar 

  33. E. BJERGBAKKE, O. L. RASMUSSEN, Chemsimul — A Program Package for Numerical Simulation of Chemical Reaction Systems, Risø National Laboratory, DK 4000 Roskilde, Denmark, 1984, Risø-R-395.

    Google Scholar 

  34. E. BJERGBAKKE, K. SHEESTED, O. L. RASMUSSEN, H. CHRISTENSEN, Input Files for Computer Simulation of Water Radiolysis. Risø National Laboratory, DK 4000 Roskilde, Denmark 1984, Risø-M-2430.

    Google Scholar 

  35. J. HOLCMAN, K. SEHESTED, E. BJERGBAKKE, E. J. HART, J. Phys. Chem., 86 (1982) 2069.

    Google Scholar 

  36. J. STAEHELIN, J. HOIGNE, Envir. Sci. Technol., 16 (1982) 676.

    Google Scholar 

  37. R. W. MATTHEWS, D. F. SANGSTER, J. Phys. Chem., 69 (1965) 1938.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehested, K., Holcman, J., Bjergbakke, E. et al. Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions. Journal of Radioanalytical and Nuclear Chemistry, Articles 101, 239–250 (1986). https://doi.org/10.1007/BF02042424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02042424

Keywords

Navigation