Journal of Plant Growth Regulation

, Volume 2, Issue 1–4, pp 229–242 | Cite as

Endogenous gibberellins and kauranoids identified from developing and germinating barley grain

  • Paul Gaskin
  • Sarah Jane Gilmour
  • John R. Lenton
  • Jake MacMillan
  • Valerie M. Sponsel


Several gibberellins (GAs) and kauranoids were identified in extracts of barley (Hordeum vulgare) by combined capillary gas chromatography-mass spectrometry (GC-MS). A partially purified acidic ethyl acetate extract from 21-day postanthesis developing barley grain (cv. Proctor) contained GA1 (trace), GA4 (trace), GA8 (trace), GA12, GA17, GA20 (tentative) (trace), GA25, GA34, GA48, 18-hydroxy-GA4, 12β-hydroxy-GA9, and 18-hydroxy-GA34 (tentative). A hydrolyzed butanol extract contained GA17, GA20, GA48, and 18-hydroxy-GA34 (tentative). An acidic ethyl acetate extract from 3-day-old germinating barley grain (cv. Maris Otter) contained GA1, GA3 (possibly a contaminant), GA17, GA19, GA20, GA34, GA48, and 18-hydroxy-GA34 (tentative). A hydrolyzed butanol extract contained GA34, GA48, and 18-hydroxy-GA34 (tentative). In germinating grain, levels of all GAs were very low. Two hydroxylated kauranoic acids and a number of other kauranoids were also detected in the above extracts. 1β-Hydroxylated GAs previously found in wheat were not found in barley in this study.


Gibberellin Relative Retention Time Steviol HPLC Fraction Barley Grain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





thin-layer chromatography


high-performance liquid chromatography


combined gas chromatography-mass spectrometry


ethyl acetate


Kovats Retention Index




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atzorn R, Weiler EW (1982) The immunoassay of gibberellins. Eleventh International Conference on Plant Growth Substances, Aberystwyth, Wales, Abstract 122Google Scholar
  2. Bearder JR, MacMillan J, Wels CM, Phinney BO (1975) The metabolism of steviol to 13-hydrox-ylatedent-gibberellanes andent-kauranes. Phytochemistry 14:1741–1748CrossRefGoogle Scholar
  3. Beeley LJ (1975) Partial synthesis of some gibberellins. PhD Thesis, University of Bristol, EnglandGoogle Scholar
  4. Beeley LJ, Gaskin P, MacMillan J (1975) Gibberellin A43 and other terpenes in endosperm ofEchinocystis macrocarpa. Phytochemistry 14:779–783CrossRefGoogle Scholar
  5. Bell GDH, Whitehouse RNH, Kirby EJM, Sage GCM (1964) Spring and winter barley. Plant Breeding Institute, Cambridge, Annual Report 1963-4, pp 58–64Google Scholar
  6. Binks R, MacMillan J, Pryce RJ (1969) Plant hormones. VIII. Combined gas chromatography-mass spectrometry of the methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8:271–284CrossRefGoogle Scholar
  7. DeJongh DC, Radford T, Hribar JD, Hanessian S, Bieber M, Dawson G, Sweeley CC (1969) Analysis of trimethylsilyl derivatives of carbohydrates by gas chromatography and mass spectrometry. J Amer Chem Soc 91:1728–1740CrossRefGoogle Scholar
  8. Faull KF, Coombe BG, Paleg LG (1974) Extraction and characterization of gibberellins fromHordeum vulgare L. seedlings. Aust J Plant Physiol 1:183–198CrossRefGoogle Scholar
  9. Frydman VM, MacMillan J (1975) The metabolism of gibberellins A9, A20 and A29 in immature seeds ofPisum sativum cv. Progress No. 9. Planta 125:181–195Google Scholar
  10. Gaskin P, Gilmour SJ, Lenton JR, MacMillan J, Sponsel VM (1982) Endogenous gibberellins and related compounds in developing grain and germinating seedlings of barley. Eleventh International Conference on Plant Growth Substances, Aberystwyth, Wales, Abstract 158Google Scholar
  11. Gaskin P, Hutchison M, Lewis N, MacMillan J, Phinney BO (1984) Microbial conversion of 12-oxygenated and other derivatives of ent-kaur-16-en-19-oic acid byGibberella fujikuroi, mutant B1-41a. Phytochemistry in pressGoogle Scholar
  12. Gaskin P, Kirkwood PS, Lenton JR, MacMillan J, Radley ME (1980) Identification of gibberellins in developing wheat grain. Agric Biol Chem 44:158–193Google Scholar
  13. Gaskin P, MacMillan J, Firn RD, Pryce RJ (1971) “Parafilm”: A convenient source of n-alkane standards for the determination of gas chromatographic retention indices. Phytochemistry 10:1155–1157CrossRefGoogle Scholar
  14. Glenn JL, Kuo CC, Durley RC, Pharis RP (1972) Use of insoluble polyvinylpyrrolidone for purification of plant extracts and chromatography of plant hormones. Phytochemistry 11: 345–351CrossRefGoogle Scholar
  15. Hedden P, MacMillan J, Grinsted MJ (1973) Fungal products. VIII. New kaurenolides fromGibberella fujikuroi. J Chem Soc Perkin I, 2773–2778CrossRefGoogle Scholar
  16. Hedden P, Phinney BO, Heupel R, Fuji D, Cohen H, Gaskin P, MacMillan J, Graebe JE (1982) Hormones of young tassels ofZea mays. Phytochemistry 21:391–393CrossRefGoogle Scholar
  17. Jones DF, MacMillan J, Radley M (1963) Plant hormones. III. Identification of gibberellic acid in immature barley and immature grass. Phytochemistry 2:307–314CrossRefGoogle Scholar
  18. Jones MG, Metzger JD, Zeevaart JAD (1980) Fractionation of gibberellins in plant extracts by reverse phase high performance liquid chromatography. Plant Physiol 65:218–221PubMedCrossRefGoogle Scholar
  19. Jones MG, Zeevaart JAD (1980) The effect of photoperiod on the levels of seven endogenous gibberellins in the long day plantAgrostemma githago L. Planta 149:274–279CrossRefGoogle Scholar
  20. Jones RL, Varner JE (1967) The bioassay of gibberellins. Planta 72:155–161CrossRefGoogle Scholar
  21. Kamiya Y, Graebe JE (1983) The biosynthesis of all major pea gibberellins in a cell-free system fromPisum sativum. Phytochemistry 22:681–689CrossRefGoogle Scholar
  22. Kovats E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentions indices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41:1915–1932CrossRefGoogle Scholar
  23. MacMillan J, Takahashi N (1968) Proposed procedure for the allocation of trivial names to the gibberellins. Nature 217:170–171PubMedCrossRefGoogle Scholar
  24. Metzger JD, Zeevaart JAD (1980) Identification of six endogenous gibberellins in spinach shoots. Plant Physiol 65:623–626PubMedGoogle Scholar
  25. Murphy GJP, Briggs DE (1973) Gibberellin estimation and biosynthesis in germinatingHordeum distichon. Phytochemistry 12:1299–1308CrossRefGoogle Scholar
  26. Nelson N (1944) A photometric adaption of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380Google Scholar
  27. Radley M (1959) The occurrence of gibberellin-Iike substances in barley and malt. Chem Ind 37:877–878Google Scholar
  28. Radley M (1966) A second gibberellin-Iike substance in immature barley seed. Nature 210:969CrossRefGoogle Scholar
  29. Radley M (1967) Site of production of gibberellin-Iike substances in germinating barley embryos. Planta 75:164–171CrossRefGoogle Scholar
  30. Radley M (1968) Production of gibberellin-Iike substances in barley seed and seedlings. In: Soc Chem Ind, Plant growth regulators, Monograph No. 31, pp 53–69, Society of Chemical Industry, LondonGoogle Scholar
  31. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23Google Scholar
  32. Sponsel VM, Gaskin P, MacMillan J (1979) The identification of gibberellins in immature seeds ofVicia faba, and some chemotaxonomic considerations. Planta 146:101–105CrossRefGoogle Scholar
  33. Yomo H (1960) Amylase-activating substance. II. Amylase-activating substance in the culture solution of barley embryo and the extraction of barley green malt. Hakko Kyokaishi 18: 494–499Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Paul Gaskin
    • 1
  • Sarah Jane Gilmour
    • 1
  • John R. Lenton
    • 2
  • Jake MacMillan
    • 1
  • Valerie M. Sponsel
    • 1
  1. 1.Agricultural Research Council Research Group, School of ChemistryThe University of BristolUK
  2. 2.Rothamsted Experimental StationHarpendenUK

Personalised recommendations