The use of3H- and14C-labelled tyrosines and product analysis to measure the mono- to diiodination rate constant ratio for iodination by molecular iodine and chloramine-T/I

  • J. Baldas
  • S. F. Colmanet


The observed rate constant ratio,k1obs/k2 obs, for the sequential iodination of L-tyrosine was determined in the concentration range 1.84·10−3 to 1·10−6 M by the use of3H- and14C-labels and product analysis by HPLC. Iodinations by chloramine-T/I gave (k1 obs/k2 obs)·β values (β=the pH dependent factor) in the range 72±3 to 55±2 and molecular iodine iodinations gave values in the range 64±5 to 39±10. It is concluded that molecular iodine is the iodinating species in both cases.


Physical Chemistry HPLC Tyrosine Inorganic Chemistry Iodine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. JAFFE, H. R. BEHRMAN (Eds), Methods of Hormone Radioimmunoassay, Academic Press, New York, 1974.Google Scholar
  2. 2.
    W. E. MAYBERRY, J. E. RALL, D. BERTOLI, J. Am. Chem. Soc., 86 (1964) 5302.CrossRefGoogle Scholar
  3. 3.
    W. E. MAYBERRY, D. A. BERTOLI, J. Org. Chem., 30 (1965) 2029.PubMedGoogle Scholar
  4. 4.
    W. E. MAYBERRY, J. E. RALL, M. BERMAN, D. BERTOLI, Biochemistry, 4 (1965) 1965.CrossRefGoogle Scholar
  5. 5.
    W. E. MAYBERRY, J. E. RALL, D. BERTOLI, Biochemistry, 4 (1965) 2606.CrossRefPubMedGoogle Scholar
  6. 6.
    W. E. MAYBERRY, Biochemistry, 6 (1967) 1320.CrossRefPubMedGoogle Scholar
  7. 7.
    W. E. MAYBERRY, T. J. HOCKERT, Endocrinology, 86 (1970) 225.PubMedGoogle Scholar
  8. 8.
    W. E. MAYBERRY, T. J. HOCKERT, J. Biol. Chem., 245 (1970) 697.PubMedGoogle Scholar
  9. 9.
    E. GROVENSTEIN JR., N. S. APRAHAMIAN, J. Am. Chem. Soc., 84 (1962) 212.CrossRefGoogle Scholar
  10. 10.
    E. GROVENSTEIN RR., N. S. APRAHAMIAN, C. J. BRYAN, N. S. GNANAPRAGASAM, D. C. KILBY, J. M. McKELVEY JR., R. J. SULLIVAN, J. Am. Chem. Soc., 95 (1973) 4261.CrossRefGoogle Scholar
  11. 11.
    J. BALDAS, S. COLMANET, Q. N. PORTER, Aust. J. Chem., 34 (1981) 1147.Google Scholar
  12. 12.
    N. M. EMANUEL, D. G. KNORRE, Chemical Kinetics, Halsted Press, New York, 1973.Google Scholar
  13. 13.
    S. F. COLMANET, M. Sc. Thesis, University of Melbourne, 1982.Google Scholar
  14. 14.
    J. M. ANTELO, J. CASADO, A. VARELA, J. M. CACHAZA, An. Quim., 75 (1979) 625.Google Scholar
  15. 15.
    O. LEVENSPIEL, Chemical Reaction Engineering, John Wiley and Sons, New York, 1962.Google Scholar
  16. 16.
    L. JIROUSEK, J. Radioanal. Chem., 65 (1981) 139.Google Scholar
  17. 17.
    I. DOBÁŠ, A. CHOULIK, V. ŠTĚRBA, M. VEČEŘA, J. Chem. Soc., Perkin II, (1972) 1189.Google Scholar
  18. 18.
    H. B. DUNFORD, I. M. RALSTON, Biochem. Biophys. Res. Commun., 116 (1983) 639.PubMedGoogle Scholar
  19. 19.
    T. S. RAO, R. N. JUKAR, Z. Naturforsch., 35A (1980) 254.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • J. Baldas
    • 1
  • S. F. Colmanet
    • 1
  1. 1.Australian Radiation LaboratoryYallambieAustralia

Personalised recommendations