Experientia

, Volume 47, Issue 1, pp 31–38 | Cite as

Captivity affects behavioral physiology: Plasticity in signaling sexual identity

  • R. E. Landsman
Reviews

Summary

Little is known about the link between captivity, physiology, and behavior in wild-caught vertebrates. Anecdotal evidence suggests that hormonal changes are responsible for behavioral changes in wild animals brought into captivity. Studying the effects of captivity on reproduction is hampered because wild animals often fail to exhibit sexual behavior under captive conditions. In weakly discharging electric fish, field studies have reported sex differences in electric organ discharges which are rarely seen in the laboratory. I now report the results of a series of laboratory investigations which show thatGnathonemus petersii exhibits seasonal, hormone-dependent, phasespecific sex differences in electric organ discharges. Captivity dramatically alters and may even reverse these sex differences as a result of rapid changes in endogenous plasma hormone levels. These findings have broad implications for research on animal physiology and behavior performed in laboratory settings.

Key words

Captivity electric organ discharge (EOD) sex differences plasma hormone levels androgens estrogen external morphology behavioral plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bardin, C., and Peterson, R., Studies of androgen production by the rat: testosterone and androstenedione content of blood. Endocrinology80 (1967) 38–44.Google Scholar
  2. 2.
    Bass, A. H., Electric organs revisited: evolution of a vertebrate communication and orientation organ, in: Electroreception, pp.13–70. Eds T. H. Bullock and W. Heiligenberg. Wiley and Sons Inc., New York 1986.Google Scholar
  3. 3.
    Bass, A. H., A hormone-sensitive communication system in an electric fish. J. Neurobiol.17 (1986) 131–156.Google Scholar
  4. 4.
    Bass, A. H., Steroid-sensitive neuroeffector pathways for sonic and electric communication in fish. Brain. Behav. Evol.28 (1986) 7–21.Google Scholar
  5. 5.
    Bass, A. H., Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms. J. comp. Neurol.244 (1986) 313–330.Google Scholar
  6. 6.
    Bass, A. H., and Hopkins, C. D., Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J. comp. Physiol.A 156 (1985) 587–604.Google Scholar
  7. 7.
    Bass, A. H., Denizot, J. P., and Marchaterre, M. A., Ultrastructural features and hormone-dependent sex differences of mormyrid electric organs. J. comp. Neurol.254 (1986) 511–528.Google Scholar
  8. 8.
    Erwin, J., and Deni, R., Strangers in a strange land: abnormal behaviors or abnormal environments?, in: Captivity and Behavior, pp. 1–28. Eds J. Erwin et al. Van Nostrand Reinhold New York 1979.Google Scholar
  9. 9.
    Fostier, A., Jalabert, B., Billiard, R., Breton, B., and Zohar, Y., The gonadal steroids, in: Fish Physiology, pp. 277–372. Eds W. S. Hoar et al. Academic Press, New York 1983.Google Scholar
  10. 10.
    Hagedorn, M., The ecology, courtship, and mating of gymnotiform electric fish, in: Electroreception, pp. 497–525. Eds. T. H. Bullock and W. Heiligenberg, Wiley and Sons Inc., New York 1986.Google Scholar
  11. 11.
    Hagedorn, M., and Carr, C., Single electrocytes produce a sexually dimorphic signal in South American electric fish,Hypopomus occidentalis (Gymnotiformes, Hypopomidae). J. comp. Physiol.A156 (1985) 511–523.Google Scholar
  12. 12.
    Hopkins, C. D., Electric communication: Functions in the social behavior ofEigenmannia virescens. Behavior50 (1974) 270–305.Google Scholar
  13. 13.
    Hopkins, C. D., Evolution of electric communication channels in mormyrids. Behav. Ecol. Sociobiol.7 (1980) 1–13.Google Scholar
  14. 14.
    Hopkins, C. D., Neuroethology of species recognition in electroreception, in: Advances in Vertebrate Neuroethology, pp. 871–881. Eds J. Ewert et al. Plenum, New York 1983.Google Scholar
  15. 15.
    Kramer, B., Electric and motor responses of the weakly electric fish,Gnathonemus petersii (Mormyridae) to play-back of social signals. Behav. Ecol. Sociobiol.6 (1979) 67–79.Google Scholar
  16. 16.
    Kramer, B., and Westby, G. W. M., No sex difference in the waveform of the pulse type electric fish,Gnathonemus petersii (Mormyridae). Experientia41 (1985) 1530–1531.Google Scholar
  17. 17.
    Landsman, R. E., and Moller, P., Testosterone changes the electric organ discharge and external morphology of the mormyrid fish,Gnathonemus petersii (Mormyriformes). Experientia44 (1988) 900–903.Google Scholar
  18. 18.
    Landsman, R. E., Jou, S. H., and Moller, P., Stress obscures signalling of sexual identity inGnathonemus petersii (Mormyriformes), in: Reproductive Physiology of Fish 1987, p. 307. Eds D. R. Idler et al. Proc. 3rd Int. Symp. Reprod. Physiol. Fish, St. John's, Newfoundland 1987.Google Scholar
  19. 19.
    Leopold, A. S., The nature of heritable wildness in turkeys. Condor46 (1944) 133–197.Google Scholar
  20. 20.
    Lücker, H., and Kramer, B., Development of a sex difference in the preferred latency response in the weakly electric fish,Pollimyrus isidori (Cuvier et Valenciennes) (Mormyridae, Teleostei). Behav. Ecol. Sociobiol.9 (1981) 103–109.Google Scholar
  21. 21.
    Mazeaud, M. M., and Mazeaud, F., Adrenergic responses to stress in fish, in: Stress and Fish, pp. 49–75. Ed. A. D. Pickering, Academic Press, New York 1981.Google Scholar
  22. 22.
    Moller, P., Electroperception. Oceanus23 (1980) 44–54.Google Scholar
  23. 23.
    Moller, P., Electroreception and the behaviour of mormyrid fish. Trends Neurosci.3 (1980) 105–109.Google Scholar
  24. 24.
    Moller, P., Serrier, J., and Bowling, D., Electric organ discharge displays during social encounter in the weakly electric fishBrienomyrus niger L. (Mormyridae). Ethology82 (1989) 177–191.Google Scholar
  25. 25.
    Moore, F. L., and Miller, L. J., Stress-induced inhibition of sexual behavior: corticosterone inhibits courtship behaviors of a male amphibian (Taricha granulosa). Horm. Behav.18 (1984) 400–410.Google Scholar
  26. 26.
    Moore, F. L., and Zoeller, R. T., Stress-induced inhibition of reproduction: evidence of suppressed secretion of LH-RH in an amphibian. Gen. comp. Endocr.60 (1985) 252–258.Google Scholar
  27. 27.
    Moore, F.L., and Deviche, P., Neuroendocrine processing of environmental information in amphibians, in: Processing of Environmental Information in Vertebrates, pp. 19–45. Ed. M. H. Stetson. Springer-Verlag, New York 1988.Google Scholar
  28. 28.
    Ozon, R., Androgens in fishes, amphibians, reptiles, and birds, in: Steroids in Nonmammalian Vertebrates, pp. 328–389. Ed. D. R. Idler. Academic Press, New York 1972.Google Scholar
  29. 29.
    Richter, C. P., The effects of domestication and selection on the behavior of the Norway rat. J. natl. Cancer Inst.15 (1954) 727–738.Google Scholar
  30. 30.
    Rivier, C., Rivier, J., and Vale, W., Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science231 (1986) 607–609.Google Scholar
  31. 31.
    Safford, S., and Thomas, P., Effects of capture and handling on circulating levels of gonadal steroids and cortisol in the spotted seatrout,Cynoscion nebulosus, in: Reproductive Physiology of Fish 1987, p. 312. Eds D. R. Idler et al. Proc. 3rd Int. Symp. Reprod. Physiol. Fish, St. John's, Newfoundland 1987.Google Scholar
  32. 32.
    Sapolsky, R. M., The endocrine stress-response and social status in the wild baboon. Horm. Behav.16 (1982) 279–292.Google Scholar
  33. 33.
    Singh, H., Griffith, R. W., Takahashi, A., Kawauchi, H., Thomas, P., and Stegeman, J. J., Regulation of gonadal steroidogenesis inFundulus heteroclitus by recombinant salmon growth hormone and purified salmon prolactin. Gen. comp. Endocr.72 (1988) 144–153.Google Scholar
  34. 34.
    Sumpter, J. P., Carragher, J., Pottinger, T. G., and Pickering, A. D., The interaction of stress and reproduction in trout, in: Reproductive Physiology of Fish 1987, pp. 299–302. Eds D. R. Idler et al. Proc. 3rd Int. Symp. Reprod. Physiol. Fish, St. John's, Newfoundland 1987.Google Scholar
  35. 35.
    Westby, G. W. M., and Kirschbaum, F. Emergence and development of the electric organ discharge inPollimyrus isidori. I. The larval discharge. J. comp. Physiol.122 (1977) 251–271.Google Scholar
  36. 36.
    Westby, G. W. M., and Kirschbaum, F. Sex differences in the electric organ discharge ofEigenmannia virescens and the effect of gonadal maturation, in: Sensory Physiology of Aquatic Lower Vertebrates, Adv. Physiol. Sci., vol. 31, pp. 179–194. Eds T. Szabo and G. Czeh. Pergamon Press, Budapest 1981.Google Scholar
  37. 37.
    Westby, G. W. M., and Kirschbaum, F., Sex differences in the waveform of the pulse-type electric fish,Pollimyrus isidori (Mormyridae). J. comp. Physiol.145 (1982) 399–403.Google Scholar
  38. 38.
    Wingfield, J. C., Changes in reproductive function of free-living birds in direct response to environmental perturbations, in: Processing of Environmental Information in Vertebrates, pp. 121–148. Ed. M. H. Stetson. Springer-Verlag, New York 1988.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • R. E. Landsman
    • 1
    • 2
  1. 1.Department of Psychology, Hunter CollegeCity University of New YorkNew York
  2. 2.Department of Herpetology and IchthyologyThe American Museum of Natural HistoryNew YorkUSA

Personalised recommendations