Kinetics of desorption of ions from quartz and mica surfaces

  • C. R. Paige
  • W. A. Kornicker
  • O. E. HilemanJr.
  • W. J. Snodgrass


As part of an investigation concerning the fate of226Ra during uranium ore milling and long-term taillings storage we have investigated the kinetics of the desorption of alkaline earth, lead and sulfate ions from quartz and mica surfaces into water and dilute nitric acid using a radio-tracer technique. The retention times are sufficiently long to permit the growth of the surface deposits hypothesized in the HILEMAN-SNODGRASS model. The kinetics of desorption of most of these ions is found to agree with the model for rate-limiting desorption proposed by CEREFOLINI. In the case of the desorption of Ba2+ from mica surfaces the data suggest some degree of integration of the Ba2+ into the mica.


Sulfate Physical Chemistry Quartz Inorganic Chemistry Uranium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. SNODGRASS, O. E. HILEMAN, On the geochemical mechanism controlling Ra-226, dissolution in uranium mill wastes (tailings). Report for National Uranium Tailings Program Energy Mines and Resources Government of Canada Ottawa Ontario. Contract No. 23241-4-1678, 1985.Google Scholar
  2. 2.
    C. R. PAIGE, O. E. HILEMAN and W. J. SNODGRASS, J. Radioanal. Nucl. Chem., Letters, 127 (1988) 341.Google Scholar
  3. 3.
    C. R. PAIGE, O. E. HILEMAN, W. A. KORNICKER, W. J. SNODGRASS, J. Radioanal. Nucl. Chem., Letters, 135 (1989) 299.Google Scholar
  4. 4.
    C. R. PAIGE, O. E. HILEMAN, W. A. KORNICKER, W. J. SNODGRASS, J. Radioanal. Nucl. Chem., Letters, 137 (1989) 319.Google Scholar
  5. 5.
    A. W. ADAMSON, Phys. Chem. Surfaces, Interscience, New York, 1967, p. 429.Google Scholar
  6. 6.
    W. SMITH, C. L. M. HOLTEN, H. N. STEIN, J. J. M. DeGOEIJ, H. M. J. THEELEN, J. Colloid Interface Sci., 63 (1978) 120.CrossRefGoogle Scholar
  7. 7.
    K. HACHIYA, M. ASHIDA, M. SASAKI, H. KAN, T. INOUE, T. YASUNAGA, J. Phys. Chem., 83 (1979) 1866.CrossRefGoogle Scholar
  8. 8.
    M. A. ANDERSON, A. J. RUBIN, Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science, Ann Arbor, 1981.Google Scholar
  9. 9.
    P. BENES, V. MAJER, Trace Chemistry of Aqueous Solutions, Elsevier, Amsterdam, 1980, p. 213.Google Scholar
  10. 10.
    E. W. THORNTON, Nuclear Technology, 65 (1984) 161.Google Scholar
  11. 11.
    C. R. PAIGE, W. A. KORNICKER, O. E. HILEMAN, W. J. SNODGRASS, Intern. J. Environ. Anal. Chem., 37 (1989) 29.Google Scholar
  12. 12.
    G. CEROFOLINI, J. Colloid Interface Sci., 86 (1982) 204.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • C. R. Paige
    • 1
  • W. A. Kornicker
    • 1
  • O. E. HilemanJr.
    • 1
  • W. J. Snodgrass
    • 2
  1. 1.Department of ChemistryMcMaster University HamiltonOntario(Canada)
  2. 2.Department of Civil EngineeringMcMaster University HamiltonOntario(Canada)

Personalised recommendations