Fluid Dynamics

, Volume 29, Issue 6, pp 789–796 | Cite as

Thermal convection in a nonequilibrium turbulent medium with rotation

  • Yu. A. Berezin
  • V. M. Trofimov


The equations of thermal convection in a rotating plane horizontal layer of nonequilibrium turbulent fluid are obtained, the system of equations is linearized and the boundary value problem is formulated. Some general properties of the perturbation spectrum are found and a solution, which includes the classical solution in the absence of turbulence as a limiting case, is obtained.


Convection Fluid Dynamics General Property Classical Solution Thermal Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, Mass. (1975).Google Scholar
  2. 2.
    S. S. Moiseev, P. B. Rutkevich, A. V. Tur, and V. V. Yanovskii, “Vortex dynamo in a convective medium with spiral turbulence,”Zh. Eksp. Teor. Fiz.,94, 144 (1988).Google Scholar
  3. 3.
    Yu. A. Berezin and V. P. Zhukov, “Convective instability in a medium with spiral turbulence,”Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 62 (1990).Google Scholar
  4. 4.
    Yu. A. Berezin and V. P. Zhukov, “Effect of rotation on the formation of large-scale structures in a turbulent medium,” Preprint No. 17 [in Russian], IPTM SO AN SSSR, Novosibirsk (1988).Google Scholar
  5. 5.
    V. M. Trofimov, “Hydrodynamics of turbulence including the large-scale part,” Preprint No. 13 [in Russian], ITPM SO AN, SSSR, Novosibirsk (1991).Google Scholar
  6. 6.
    V. M. Trofimov, “Contribution to the phenomenological vortex model of turbulence,” in:Modeling in Mechanics, Vol. 6, [in Russian], Novosibirsk (1992), p. 137.Google Scholar
  7. 7.
    G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems, Wiley, New York (1977).Google Scholar
  8. 8.
    L. I. Sedov,A Course of Continuum Mechanics, Wolters-Noordhoff, Grongingen (1971).Google Scholar
  9. 9.
    S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, et al., “Theory of the formation of large-scale structures in hydrodynamic turbulence,”Zh. Eksp. Teor. Fiz.,85, 1979 (1983).Google Scholar
  10. 10.
    L. G. Loitsyanskii,Mechanics of Liquids and Gases, Pergamon Press, Oxford (1966).Google Scholar
  11. 11.
    G. Z. Gershuni and E. M. Zhukhovitskii,Convective Stability of an Incompressible Fluid [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yu. A. Berezin
  • V. M. Trofimov

There are no affiliations available

Personalised recommendations