Journal of Radioanalytical and Nuclear Chemistry

, Volume 168, Issue 2, pp 287–296 | Cite as

Determination of optimum conditions for INAA of archaeological clay figurines

  • F. Carrot
  • C. Dardenne
  • N. Deschamps
  • Ch. Lahanier
  • G. Revel


In order to obtain sufficiently accurate results for the provenance characterization of ceramic objects, the error risks are studies at each step of the instrumental neutron activatin analysis. The homogeneity of clay figurines and the reproductibility of the analytical process are tested. For the sampling, a weight of 100 mg is enough to obtain significant results. The use of the “K0 Standardization Method” and a well specified position during the radioactive measurements, improve the precision of the element determinations. The experimental conditions chosen are described and the accuracy of the method is tested on international standards.


Clay Physical Chemistry Inorganic Chemistry Optimum Condition Accurate Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. HARBOTTLE, Activation Analysis in Archaeology, in Radiochemistry, G. W. A. NEWTON (Ed.), Vol. 3, The Chemical Society, Burlington House, London, 1976, p. 33.Google Scholar
  2. 2.
    I. KULEFF, R. DJINGOVA, Activation Analysis in Archaeology, in Activation Analysis, Z. ALFASSI (Ed.), Vol. 2, CRC-Press, 1990, p. 431.Google Scholar
  3. 3.
    C. LAHANIER, C. DENNERY, Analyse Statistique de la Composition Chimique des Terres Cuites, Les figurines Galloromaines en terre Cuite, Paris 1989, Documents de l'Archéologie Française, (in press).Google Scholar
  4. 4.
    ROUVIER-JEANLIN, Les Gigurines Gallo-Romaines en Terre Cuite au Musée des Antiqués Nationales, CNRS XXIV, Gallia, 1972.Google Scholar
  5. 5.
    M. BALLA, G. KEOMLEY, G. ROSNER, J. Radioanal. Nucl. Chem., 141 (1990) 347.CrossRefGoogle Scholar
  6. 6.
    O. BIRGUL, M. DISKSIC, L. YAFE, J. Radional. Chem., 39 (1977) 45.Google Scholar
  7. 7.
    I. BRISSAUD, A. HODAYER, C. JEHANO, A. SABIR, J. Radioanal. Nucl. Chem., 89 (1985) 473.Google Scholar
  8. 8.
    R. DJINGOVA, I. KULEFF, I. PENEV, J. Radional. Nucl. Chem., 144 (1990) 399.Google Scholar
  9. 9.
    I. PERLMAN, F. AASARO, Archeometry, 11 (1969) 21.Google Scholar
  10. 10.
    F. DE CORTE, L. MOOENS, S. JOVANOVIC, A. SIMONITS, A. DE WISPELAERE, J. Radional. Nucl. Chem., 102 (1986) 37.CrossRefGoogle Scholar
  11. 11.
    G. REVEL, N. DESCHAMPS, C. DARDENNE, J. L. PASTOL, B. HANIA, H. NGUYEN DINH, J. Radioanal. Nucl. Chem., 85 (1984) 137.Google Scholar
  12. 12.
    A. SABIR, Thèse Université Paris Suc, Orsay, 1986.Google Scholar
  13. 13.
    G. REVEL, C. LAHANIER, Fresen. Z. Anal. Chem., (1991) (in press).Google Scholar
  14. 14.
    A. S. SZABO, J. Radioanal. Nucl. Chem., 96 (1985) 241.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • F. Carrot
    • 1
  • C. Dardenne
    • 1
  • N. Deschamps
    • 1
  • Ch. Lahanier
    • 2
  • G. Revel
    • 1
  1. 1.Laboratoire Pierre SueGif-sur-Yvette(France)
  2. 2.Laboratorie de Recherche des Musées de FranceParis Cedex 01(France)

Personalised recommendations