Extraction of uranium (VI), plutonium (IV) and some fission products by tri-iso-amyl phosphate

  • J. P. Shukla
  • M. M. Gautam
  • C. S. Kedari
  • S. H. Hasan
  • D. C. Rupainwar


The extractive properties of tri-isoamyl-phosphate (TAP), an indigenously prepared extractant, and the loading capacity of extraction solvent containing TAP for U(VI) and Pu(IV) ions in nitric solution have been investigated. The dependence of the distribution ratio on the concentration of nitric acid showed that TAP has an ability to extract these actinides, while the fission product contaminants are poorly extracted. The distribution data revealed a quantitative extraction of both U(VI) and Pu(IV) from moderate nitric acidities in the range 2–7 mol · dm−3. Slope analysis proved predominant formation of the disolvated organic phase complex of the type UO2(NO3). 2TAP and Pu(NO3)4·2TAP with U(VI) and PU(IV), respectively. On the contrary, the extraction of fission product contaminants such as144Ce,137Cs,9Nb.,147Pr,106Ru,95Zr was almost negligible even at very high nitric acid concentrations in the aqueous phase indicating its potential application in actinide partitioning. The recovery of TAP from the loaded actinides could be easily accomplished by using a dilute sodium carbonate solution or acidified distiled water (≈0.01 mol · dm−3 HNO3) as the strippant for U(VI) and using uranous nitrate or ferrous sulphamate as that for Pu(IV). Radiation stability of TAP was adequate for most of the process applications.


Uranium Plutonium Sodium Carbonate Fission Product Carbonate Solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Shulz, J. D. Navratil, Science and Technology of Tributyl Phosphate, Vols 1–3, CRC Press, Boca Raton, Florida, 1984.Google Scholar
  2. 2.
    Z. Kolarik, Revs. Inorg. Chem., 10 (1989) 27.Google Scholar
  3. 3.
    Y. Morita, M. Kubota, J. Nucl. Sci. Technol., 24 (1987) 227.Google Scholar
  4. 4.
    G. M. Kosolapoff, Organophosphorus Compounds, John Wiley, New York, 1950.Google Scholar
  5. 5.
    T. Sato, J. Radional. Nucl. Chem., 158 (1992) 391.CrossRefGoogle Scholar
  6. 6.
    D. J. Crouse, W. D. Arnold, F. J. Hurst, Proc. Intern. Solvent Extraction Conference, Denver, Colorado, 1983, p. 90.Google Scholar
  7. 7.
    A. S. Nikiforov, B. S. Zakhrikin, Eh. V. Renard, A. M. Rozen, Eh. Ya. Smetanin, Proc. Intern. Conf., “Actinide-89”, Tashkent, 1989, p. 20.Google Scholar
  8. 8.
    B. D. Pandey, D. C. Rupainwar, J. Inorg. Nucl. Chem., 41 (1979) 377.CrossRefGoogle Scholar
  9. 9.
    S. H. Hasan, D. C. Rupainwar, Acta Chim. Hung., 127 (1990) 65.Google Scholar
  10. 10.
    S. H. Hasan, D. C. Rupainwar, Acta Chim. Hung., 127 (1990) 235.Google Scholar
  11. 11.
    J. P. Singh, S. H. Hasan, D. C. Rupainwar, Ind. J. Tech., 24 (1986) 169.Google Scholar
  12. 12.
    S. A. Pai, J. P. Shulka, P. K. Khopkar, M. S. Subramanian, J. Radional. Chem., 42 (1978) 323.Google Scholar
  13. 13.
    A. H. Blatt, Organic Synthesis, Vol. 2, Wiley New York, 1943, p. 109.Google Scholar
  14. 14.
    S. S. Rattan, A. V. R. Reddy, V. S. Mallapurkar, R. J. Singh, S. Prakash, J. Radional. Chem., 67 (1981) 95.Google Scholar
  15. 15.
    J. L. Ryan, E. J. Wheelwricht, USAEC Rept. HW-55893, 1959.Google Scholar
  16. 16.
    J. Bjerrum, G. Schwarzenbach, L. G. Sillen (Eds), Stability Constants of Metal Ion Complexes, Part II, Inorganic Ligands, Chemical Society, London, 1958.Google Scholar
  17. 17.
    H. R. Ihle, A. P. Murrenhof, M. Karayanis, IAEA, Viena, 1967, p. 69.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • J. P. Shukla
    • 1
  • M. M. Gautam
    • 1
  • C. S. Kedari
    • 2
  • S. H. Hasan
    • 3
  • D. C. Rupainwar
    • 3
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Fuel Reprocessing DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of Applied ChemistryB. H. U.VaranasiIndia

Personalised recommendations