Journal of Radioanalytical and Nuclear Chemistry

, Volume 197, Issue 1, pp 133–148 | Cite as

Separation of low levels of actinides by selective oxidation/reduction and co-precipitation with neodymium fluoride

  • R. R. Rao
  • E. L. Cooper


A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the α-spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedurés are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10−4 and 3.2×10−4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.


MnO2 Plutonium TiCl3 Hydroxylamine Permanganate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.P. HARDY, P.W. KREY, H.L. VOLCHOK, Nature 242 (1973) 444.CrossRefGoogle Scholar
  2. 2.
    V.E. NOSHKIN Jr., C. GATROUSIS, Earth and Planetary Science Letters, 22 (1974) 111.CrossRefGoogle Scholar
  3. 3.
    G.R. CHOPPIN, Radiochim. Acta, 43 (1988) 82.Google Scholar
  4. 4.
    M.S. MILYUKOVA, N.I. GUSEV, I.G. SENTYURIN, I.S. SKLYARENKO, Analytical Chemistry of Plutonium, Daniel Davey & Co., Inc., New York, 1967.Google Scholar
  5. 5.
    G.A. BURNEY, R.M. HARBOUR, Radiochemistry of Neptunium, Nuclear Science Series: National Academy of Sciences-National Research Council, US Atomic Energy Commission, NAS-NS-3060, Oak Ridge, 1974.Google Scholar
  6. 6.
    J.E. GRINDLER, The Radiochemistry of Uranium, Nuclear Science Series: National Academy of Sciences-National Research Council, US Atomic Energy Commission, NAS-NS-3050, Argonne, Illinois, 1962.Google Scholar
  7. 7.
    B.F. MYASOEDOV, Radiochim. Acta, 43 (1988) 84.Google Scholar
  8. 8.
    P. DE REGGE R. BODEN, Nucl. Instr. Meth. Phys. Res., 223 (1984) 181.CrossRefGoogle Scholar
  9. 9.
    J.D. EAKINS, Nucl. Instr. Phys. Res., 223 (1984) 194.CrossRefGoogle Scholar
  10. 10.
    R.L. WILLIAMS, G.E. GROTHAUS, Nucl. Instr. Meth. Phys. Res., 223 (1984) 200.CrossRefGoogle Scholar
  11. 11.
    C.W. SILL, K.W. PUPHAL, F.D. HINDMAN, Anal. Chem., 46 (1974) 1725.CrossRefPubMedGoogle Scholar
  12. 12.
    C. SARZANINI, E. MENTASTI, P. BENZI, P. VOLPE, P. SEZZANO, R. GIACOMELLI, Radiochim. Acta, 43 (1988) 153.Google Scholar
  13. 13.
    S. DONIVAN, M. HOLLENBACH, M. COSTELLO, Anal. Chem., 59 (1987) 2556.CrossRefGoogle Scholar
  14. 14.
    N.P. SINGH, P. LINSALATA, R. GENTRY, M.E. WRENN, Anal. Chim. Acta, 111 (1979) 265.CrossRefGoogle Scholar
  15. 15.
    N.P. SINGH, S.A. IBRAHIM, N. COHEN, M.E. WRENN, Anal. Chem., 51 (1979) 1978.CrossRefPubMedGoogle Scholar
  16. 16.
    A. SAITO, G.R. CHOPPIN, Anal. Chem., 55 (1983) 2454.CrossRefGoogle Scholar
  17. 17.
    F.L. MOORE, Anal. Chem., 36 (1964) 2158.CrossRefGoogle Scholar
  18. 18.
    F.L. MOORE, Anal. Chem., 38 (1966) 510.CrossRefGoogle Scholar
  19. 19.
    M. YAMAMOTO, K. CHATANI, K. KOMURA, K. UENO, Radiochim. Acta, 47 (1989) 63.Google Scholar
  20. 20.
    R.P. BERNABEE, D.R. PERCIVAL, F.D. HINDMAN, Anal. Chem., 52 (1980) 2351.CrossRefGoogle Scholar
  21. 21.
    H.D. LIVINGSTON, D.R. MANN, V.T. BOWEN, Report COO-3563-27, Woods Hole Oceanographic Institution, Massachusetts, 1974.Google Scholar
  22. 22.
    E. HOLM, R.B.R. PERSSON, Report IAEA-SM-229/96, University of Lund, Sweden, 1978.Google Scholar
  23. 23.
    J. KORKISCH, F. TERA, Anal. Chem., 33 (1961) 1264.CrossRefGoogle Scholar
  24. 24.
    E.K. HULET, R.G. GUTMACHER, M.S. COOPS J. Inorg. Nucl. Chem., 17 (1961) 350.CrossRefGoogle Scholar
  25. 25.
    N.A. TALVITIE, Anal. Chem., 43 (1971) 1827.CrossRefPubMedGoogle Scholar
  26. 26.
    D. KNAB, Anal. Chem., 51 (1979) 1095.CrossRefGoogle Scholar
  27. 27.
    N.W. GOLCHERT, J. SEDLET, Radiochem. Radioanal. Letters, 12 (1972) 215.Google Scholar
  28. 28.
    E. MATHEW, V.M. MATKAR, K.C. PILLAI, J. Radioanal. Chem., 62 (1981) 267.Google Scholar
  29. 29.
    E.L. COOPER, AECL Report RC-890, Analysis of Pu, Am and Cm: Notes prepared during an IAEA expert mission to Thailand, 1992.Google Scholar
  30. 30.
    S.G. THOMPSON, G.T. SEABORG, Process in Nuclear Energy. Series III, Process Chemistry, p. 163, 1956.Google Scholar
  31. 31.
    J. KOOI, U. HOLLSTEIN, Health Phys., 8 (1962) 41.PubMedGoogle Scholar
  32. 32.
    E.P. HORWITZ, R. CHIARIZIA, M.L. DIETZ, H. DIAMOND, D.M. NELSON, Anal. Chim. Acta 281 (1993) 361.CrossRefGoogle Scholar
  33. 33.
    E.H. APPELMAN, H. DIAMOND, E.P. HORWITZ, J.C. SULLIVAN, Radiochim. Acta, 55 (1991) 61.Google Scholar
  34. 34.
    F.D. HINDMAN, Anal. Chem., 55 (1983) 2460.CrossRefGoogle Scholar
  35. 35.
    F.D. HINDMAN, Anal. Chem., 58 (1986) 1238.CrossRefGoogle Scholar
  36. 36.
    C.W. SILL, R.L. WILLIAMS, Anal. Chem., 53 (1981) 412.Google Scholar
  37. 37.
    C.W. SILL, Nucl. Chem. Waste Management, 7 (1987) 201.CrossRefGoogle Scholar
  38. 38.
    C. KELLER, The Chemistry of the Transuranium Elements, Verlag Chemie, Germany, 1971.Google Scholar
  39. 39.
    V.A. MIKHAILOV, Analytical Chemistry of Neptunium, Halsted Press, New York, 1973.Google Scholar
  40. 40.
    A.S.G. MAZUMDAR, P.V. BALAKRISHNAN, R.N. SINGH Vijnana Parishad Anusandhan Patrika, 4 (1961) 149; UCRL-Trans-398(L).Google Scholar
  41. 41.
    L.A. CURRIE, Anal. Chem., 40 (1968) 586.CrossRefGoogle Scholar
  42. 42.
    E.L. COOPER, P. VILKS, M.K. HAAS, J.F. MATTIE, AECL Report RC-1150, Measurement of Radionuclide speciation in groundwater using anion exchange resins, 1994.Google Scholar
  43. 43.
    R.W.D. KILLEY, J.O. McHUGH, D.R. CHAMP, E.L. COOPER, J.L. YOUNG, Environ. Sci. Technol., 18 (1984) 148.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • R. R. Rao
    • 1
  • E. L. Cooper
    • 1
  1. 1.Chalk River Laboratories, Environmental Research BranchAECL ResearchChalk RiverCanada

Personalised recommendations