Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 11, pp 2023–2040 | Cite as

Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa)

  • Kimmo Nurmi
  • Vladimir Ossipov
  • Erkki Haukioja
  • Kalevi Pihlaja
Article

Abstract

We studied seasonal and between-tree variation in the composition and content of total and individual low-molecular-weight phenolics (LMWP) in leaves of mountain birch trees (Betula pubescens ssp.tortuosa). The major phenolic compounds were chlorogenic acid, quercetin-3-O-β-D-glucuronopyranoside, myricetin-3-O-(5-acetyl)-L-rhamnopyranoside, and 1-O-galloyl-β-D-(2-O-acetyl)-glucopyranose. The content of total phenolics, as well as the sum of individual LMWP, varied only slightly among trees while variation in contents of individual LMWP was large. Concentrations of almost all phenolics decreased during the growing season but pairwise correlations between individual phenolics remained similar over the whole season indicating tree-specific LMWP profiles over the season. Among flavonoids, the between-tree component of variation was 2.6 times as large as the seasonal component, while for variation of nonflavonoids the between-tree component was larger than the seasonal one. To explain the significant correlations within both flavonoid and nonflavonoid compounds, we discuss the biogenesis of LMWP in birch leaves, as well as their ecological role.

Key Words

Betula pubescens ssp.tortuosa birch phenolics, flavonoid glycosides among-tree variation seasonal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, H. M., 1993. Phenolics in ecological interactions: The importance of oxidation.J. Chem. Ecol. 19:1521–1552.Google Scholar
  2. Baldwin, I. T., Schultz, J. C., andWard, D. 1987. Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum).J. Chem. Ecol. 13:1069.Google Scholar
  3. Bate-Smith, E. 1954. Astringency in foods.Food 23:124–127.Google Scholar
  4. Bate-Smith, E., andLerner, N. 1954. Leucoanthocyanins 2. Systematic distribution of leucoanthocyanins in leaves.Biochemistry. 58:126–132.Google Scholar
  5. Berenbaum, M. R., 1995. Turnabout is fair play: Secondary roles for primary compounds.J. Chem. Ecol. 21:925–940.Google Scholar
  6. Bernays, E. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.Google Scholar
  7. Coley, P. D., Bryant, J. P., andChapin, F. S. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.Google Scholar
  8. Cooper-Driver, G., Finch, S., Swain, T., andBernays, E. 1977. Seasonal variation in secondary plant compounds in relation to the palatability ofPteridium aquilinium.Biochem. Syst. Ecol. 5:177–183.Google Scholar
  9. Dement, W. A., andMooney, H. A. 1974. Seasonal variation in the production of tannins and cyanogenic glucosides in the chapparal shrubsHeteromeles arbutifolia.Oecologia 15:65–76.Google Scholar
  10. Duffey, S., Bloem, K., andCampbell, B. 1986. Consequences of sequestration of plant natural products in plant-insect-parasitoid interactions, pp. 31–60,in D. Boethel and R. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. John Wiley & Sons (Ellis Horwood Limited), Frome, Somerset, U.K.Google Scholar
  11. Feeny, P. P. 1970. Seasonal change in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.Google Scholar
  12. Feeny, P. P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.Google Scholar
  13. Felton, G. W., Donato, K., Del Vecchio, R. J., andDuffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 15:2667–2694.Google Scholar
  14. Gross, G. 1992. Enzymatic synthesis of gallotannins and related compounds.Recent Adv. Phytochem. 26:297–324.Google Scholar
  15. Hanhimäki, S., Senn, J., andHaukioja, E. 1996. The convergence in growth of foliage-chewing insect species on individual mountain birch trees.J. Anim. Ecol. In press.Google Scholar
  16. Harborne, J. B., Boardley, M., andLinder, H. P., 1985. Variations of flavonoid patterns within the genusChondrapetalum.Phytochemistry 24:273–278.Google Scholar
  17. Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense—a reappraisal.J. Chem. Ecol. 14:1789–1805.Google Scholar
  18. Haukioja, E., Niemelä, P., andSirén, S. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover the defoliation, in the mountain birch,Betula pubescens ssp.tortuosa.Oecologia 65:214–222.Google Scholar
  19. Haukioja, E., Ruohomäki, K., Suomela, J., andVuorisalo, T. 1991. Nutritional quality as a defense against herbivores.Forest Ecol. Manage. 39:237–245.Google Scholar
  20. Hurrel, R., Finot, P., andCuq, J. 1982. Protein-polyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein.J. Nutr. 47:191–211.Google Scholar
  21. Julkunen-Tiitto, R. 1989. Distribution of certain phenolics in salix species (salicaceae). PhD dissertation. University of Joensuu, Joensuu.Google Scholar
  22. Kuiters, A. T. 1989. Effects of phenolic acids on germination and early growth of herbaceous woodland plants.J. Chem. Ecol. 15:467–479.Google Scholar
  23. Lawton, J. H. 1976. The structure of the arthropod community on bracken.Bot. J. Linn. Soc. London 73:187–216.Google Scholar
  24. Li, H. H., Inoue, M., Nishimura, H., Mizutani, J., andTsuzuki, E. 1993. Interactions oftranscinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce.J. Chem. Ecol. 19:1775–1787.Google Scholar
  25. Lindroth, R. L., Shia, M. T. S., andSchreiber, J. 1987. Seasonal patterns in the phytochemistry of threePopulus species.Biochem. Syst. Ecol. 15:681–686.Google Scholar
  26. Lois, R. 1994. Accumulation of UV-absorbing flavonoids induced by UV-radiation inArabidopsis thaliana L.Planta 194:498–503.Google Scholar
  27. Macauley, B. J., andFox, L. R. 1980. Variation in total phenols and condensed tannins inEucalyptus: Leaf phenology and insect grazing.Aust. J. Ecol. 5:31–35.Google Scholar
  28. Martin, J., andMartin M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species.Oecologia 54:205–211.Google Scholar
  29. Martin, J., Martin, M., andBernays, E. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids herbivores: Implication for theories of plant defense.J. Chem. Ecol. 13:605–621.Google Scholar
  30. Northup, R. R., Yu, Z., Dahlgren, R. A., andVogt, K. A. 1995. Polyphenol control of nitrogen release from pine litter.Nature 377:227–229.Google Scholar
  31. Ossipov, V., andShein, I. 1990. Role of quinic acid in lignin biosynthesis inPinus sylvestris.Fiziol. Rast. 37:518–526.Google Scholar
  32. Ossipov, V., Nurmi, K., Loponen, J., Prokopiev, N., Haukioja, E., andPihlaja, K. 1995. HPLC isolation and identification of flavonoids from white birchBetula pubescens leavesBiochem.Syst. Ecol. 23:213–222.Google Scholar
  33. Ossipov, V., Nurmi, K., Loponen, J., Haukioja, E., andPihlaja, K. 1996. HPLC separation and identification of phenolic compounds from leaves ofBetula pubescens andBetula pendula.J. Chromatogr. A 721:59–68.Google Scholar
  34. Pierpoint, W. 1983. Reaction of phenolic compounds with proteins, and their relevance to the production of leaf protein, pp. 235–267,in L. Telek and H. Graham (eds.). Leaf Protein Concentrates. Avi Publishing, Westport, Connecticut.Google Scholar
  35. Rhoades, D. F., andCates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.Google Scholar
  36. Schultz, J. C. 1989. Tannin-insect interactions. pp. 417–433,in R. W. Hemingway and J. J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.Google Scholar
  37. Schultz, J. C., Nothnagle, P. J., andBaldwin, I. T. 1982. Seasonal and individual variation in leaf quality of two northern hardwoods tree species.Am. J. Bot. 69:753–759.Google Scholar
  38. Shen, Z., Haslam, E., Falshow, C., andBegley, M. 1986. Procyanidins and polyphenols ofLatrix gemelini bark.Phytochemistry 26:2629–2635.Google Scholar
  39. Stafford, H. 1988. Proanthocyanidins and the lignin connection.Phytochemistry 27:1–6.Google Scholar
  40. Strack, D., Heilemann, J., Wray, V., andDirks, H. 1989. Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles.Phytochemistry 28:2071–2078.Google Scholar
  41. Suomela, J., Ossipov, V., andHaukioja, E. 1995. Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth ofEpirrita autumnata larvae.J. Chem. Ecol. 21:1421–1446.Google Scholar
  42. Takechi, M., andTanaka, Y. 1987. Binding of 1,2,3,4,6-pentagalloylglucose to protein, lipids, nucleic acids and sugars.Phytochemistry 26:95–97.Google Scholar
  43. Tahvanainen, J., Julkunen-Thtto, R., Rousi, M., andReichardt, P. B. 1991. Chemical determinants of resistance in winter-dormant seedlings of European white birch (Betula pendula) to browsing by the mountain hare.Chemoecology 2:49–54.Google Scholar
  44. Thieme, H. 1965. Die phenolglycoside der Salicaceen. 6.Pharmazie 20:688–691.PubMedGoogle Scholar
  45. Thieme, H. 1971. Vorkommen und Verbreitung von Phenolglycosiden in der Familie der Salicaceen.Herba Pol. 17:248–257.Google Scholar
  46. Torres, A. M., Mau-Lastovicka, T., andRezaaiyan, R. 1987. Total phenolic and high-performance liquid chromatography of phenolic acids of avocado.J. Agric. Food Chem. 35:921–925.Google Scholar
  47. Wilt, F. M., andMiller, G. C. 1992. Seasonal variation of coumarin and flavonoid concentrations in persistent leaves of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis: Asteraceae).Biochem. Syst. Ecol. 20:53–67.Google Scholar
  48. Wilt, F. M., Geddes, J. D., Tamma, R. V., Miller, G. C., andEverett, R. L. 1992. Interspecific variation of phenolic concentrations in persistent leaves among six taxa from subgenusTridentatae ofArtemisia (Asteraceae).Biochem. Syst. Ecol. 20:41–52.Google Scholar
  49. Winter, M., andHerrmann, K. 1986. Esters and glucosides of hydroxycinnamic acids in vegetables.J. Agric. Food Chem. 34:616–620.Google Scholar
  50. Zenk, M. 1979. Recent work on cinnamoyl CoA derivatives.Recent Adv. Phytochem. 12:139–176.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Kimmo Nurmi
    • 1
  • Vladimir Ossipov
    • 1
    • 2
  • Erkki Haukioja
    • 2
  • Kalevi Pihlaja
    • 1
  1. 1.Laboratory of Physical ChemistryUniversity of TurkuTurkuFinland
  2. 2.Laboratory of Ecological ZoologyUniversity of TurkuTurkuFinland

Personalised recommendations