Journal of Radioanalytical and Nuclear Chemistry

, Volume 208, Issue 2, pp 559–575 | Cite as

Radionuclides migration in the geosphere and their sorption on natural sorbents

  • V. Jedináková-Křížová


This report identifies a number of mechanisms that retard radionuclide migration, describes methods that are used to study such retardation phenomena and evaluates the extent to which this methods may be used to diagnose radionuclide migration through various types of geologic media. A qualitative, quantitative and applicable basis for ion exchange modelling in clay have provided. Caesium and strontium are taken as a reference elements, and itsK d values obtained from both batch and diffusion experiments are explained and independently predicted by the model.


Clay Physical Chemistry Migration Inorganic Chemistry Radionuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RELUEA J. F., SERNE R. J., RAI D., Methods for Determining Radionuclide Retardation Factor, Pacific Northwest Laboratory Richland, Washington, PNL-3349, 1980.Google Scholar
  2. 2.
    Performance of Engineered Barriers in Deep Geological Repositories, Tech. Rep. Serieis 342, IAEA, Vienna, 1992.Google Scholar
  3. 3.
    ZELINKA Z.: Semiquantitative criterions for geological aspects of Radioactive Waste Disposal, report MPO 93-16, Prague, 1993.Google Scholar
  4. 4.
    Report on Radioactive Waste Disposal, IAEA Tech. Rep. Ser. 349, 1993.Google Scholar
  5. 5.
    BARAN V., Sorption Properties of Some Natural Minerals and Clay (in Czech), Report of Nuclear Research Institute in Řež, 1972.Google Scholar
  6. 6.
    JEDINÁKOVÁ-KŘÍŽOVÁ V.: J. Radioanal. Nucl. chem., 1995, in pressGoogle Scholar
  7. 7.
    KARNLAND O., PUSCH R., Development of Clay Characterization Methods for Use in Repository Design with application to a Natural Ca Bentonite Clay Containing a Redox Front, Rep. SKB Tech. Rep. 90-42, 1990.Google Scholar
  8. 8.
    ERIKSON T., JACOBSON A., PUSH R., Ionic Diffusion through Compacted Bentonite, SKB Tech. Rep. 81-6, 1981.Google Scholar
  9. 9.
    BAESTLE L.H., MITTEMPERGHER M., Disposal in Argillaceous Formation, Radioactive Waste Management and Disposal, Proceeding of the First European Community Conference, edit. Simon R. and Orlowski S., Luxembourg, p. 442, 1980.Google Scholar
  10. 10.
    CHEUNG S. C. H., Canadian Journal of Civil Engineering 16 (1989) 434.Google Scholar
  11. 11.
    CHEUNG S. C. H., GRAY M. N., DIXON D. A., Hydraulic and Ionic Properties of Bentonite-Sand Buffers Materials. Coupled Processes Associated with a Nuclear Waste Repository, Academic Press, N. York, Vol. 30, p. 393–407, 1987.Google Scholar
  12. 12.
    ROWE R. K., CAERS CH. J., BARONE F., Can. Geotech. J. 25 (1988) 108.Google Scholar
  13. 13.
    MIYAHARA K. ASHIDA T. KOHARA Y., YUSA Y., SASAKI N., Radiochmica Acta 52 (1991) 293.Google Scholar
  14. 14.
    SATO H., ASHIDA T., KOHARA Y., YUI M., Study of Retardation Mechanism of3H,99Tc,137Cs,237Np and243Am in Compacted Sodium Betonite, Mat. Soc. Symp. Proc. 294 (1993), 403.Google Scholar
  15. 15.
    Site Investigations for Repositories for Solid Radioactive Wastes in Deep Continental Geological Formations, TECH REP Series 215, IAEA, 1982.Google Scholar
  16. 16.
    HONDA A., TESHIMA T., TSURUDOME K., ISHIKAWA H., YUSA Y., SASAKI N., Effect of Compacted Bentonite on the Corrosion Behavior of Carbon Steel as Geological Isolation Overpack Material, Mater. Res. Soc. Symp. Proc. 1991, 212 (Sci Basis Nucl. Waste Manage 14 (1991) 287.Google Scholar
  17. 17.
    LIESER K. H., BAUSCHER C., Radiochimica Acta 42 (1987) 205.Google Scholar
  18. 18.
    WANNER H., ALBINSSON Y., WIELAND E., Project Caesium — An Ion Exchange Model for the Prediction of Distribution Coefficients of Caesium in Bentonite, SKB Tech. Rep. 94-10, 1994.Google Scholar
  19. 19.
    WAHLBERG J. S. AND FISHMAN M. J., Geol. Survey Bull., 1140-A, A1–A30, 1962.Google Scholar
  20. 20.
    WANNER H., WIELAND E., Thermodynamic Modelling of Bentonite-Groundwater Ion Exchange Reaction at the Na-smectite/water Interface, MBT Technical Report, 1993.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • V. Jedináková-Křížová
    • 1
  1. 1.Department of Analytical ChemistryInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations