Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 162, Issue 1, pp 71–78 | Cite as

Kinetics of chlorine isotope exchange reaction between sodium chloride-36 and triphenyltin chloride in mixed solvents

  • F. M. Elzawawy
  • E. A. Saad
  • I. H. Badr
Article
  • 23 Downloads

Abstract

The isotope exchange reaction between Na36Cl and triphenyltin chloride in dioxane-water (80∶20% w/w) and ethanol-water (90∶10% w/w) mixed solvents have been studied at 25°C, 35°C and 50°C. The exchange reaction was found to proceed via a bimolecular SN2, limiting mechanism with reaction rates depending on the solvent used. Inhibition of the exchange in ethanol-water is probably due to solvation of chloride ion through hydrogen bond formation. The rate laws for the exchange reactions are: Re=3.24·109 e−65,556/RT [Ph3SnCl]α[NaCl] in dioxane-water and Re=6.61·108 e−69,595/RT [Ph3SnCl]α[NaCl] in ethanol-water, where α is the degree of dissociation of NaCl and Re is the rate of exchange in mol l−1·s−1. The activation parameters ‡H*, ‡S* and ‡G* are reported.

Keywords

Hydrogen Chloride Hydrogen Bond Chlorine Exchange Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. STILLSON, M. KAHN, J. Amer. Chem. Soc., 75 (1953) 3579.Google Scholar
  2. 2.
    R. CREMLYN, P. H. GORE, I. KEZINI, O. APOUOUS, C. MORRIS, J. Chem. Res. Synop., 7 (1982) 194.Google Scholar
  3. 3.
    W. BRUCE, M. KAHN, J. A. LEARY, J. Amer. Chem. Soc., 87 (1965) 2800.Google Scholar
  4. 4.
    S. GAETANO, P. GARMEN, Inorg. Chim. Acta, 41 (1980) 99.Google Scholar
  5. 5.
    U. BELLUCO, L. CATTALINI, A. ORIO, Gazz. Chem. Ital., 93 (1963) No. 11, 1422.Google Scholar
  6. 6.
    J. STARY, J. PRAŠILOVA, Radiochem. Radioanal. Lett., 26 (1976) 193.Google Scholar
  7. 7.
    M. L. BIRD, E. D. HUGHES, C. K. INGOLD, J. Chem. Soc., 1954, p. 634.Google Scholar
  8. 8.
    A. I. VOGEL, A Textbook of Practical Organic Chemistry 3th ed., Longman and Co., London, 1956.Google Scholar
  9. 9.
    A. C. WAHL, N. A. BONNER, Radioactivity Applied to Chemistry, 2nd ed., John Wiley and Sons Inc., New York, 1958.Google Scholar
  10. 10.
    C. P. LUEHR, G. E. CHALLENGER, B. J. MASTERS, J. Am. Chem. Soc., 78 (1956) 1314.Google Scholar
  11. 11.
    L. J. LE ROUX, E. R. SWART, J. Chem. Soc., 1955, p. 1475; 1956, p. 2110.Google Scholar
  12. 12.
    G. M. BARROW, Physical Chemistry, 4th ed., McGraw-Hill International Book Company, 1979.Google Scholar
  13. 13.
    C. K. INGOLD, Structure and Mechanisms in Organic Chemistry, G. Bell and Sons, London, 1953.Google Scholar
  14. 14.
    S. GLASSTONE, K. J. LAIDLER, H. EYRING, The Theory of Rate Process, McGraw-Hill Book Co., Inc., New York, 1941.Google Scholar
  15. 15.
    J. A. LEARY, M. KAHN, J. Am. Chem. Soc., 81 (1959) 4173.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • F. M. Elzawawy
    • 1
  • E. A. Saad
    • 1
  • I. H. Badr
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAin Shams UniversityCairo(Egypt)

Personalised recommendations