Journal of Radioanalytical and Nuclear Chemistry

, Volume 143, Issue 2, pp 415–426 | Cite as

Electrochemical reduction of actinide ions in aqueous solution

Applications to separations and some intermetallic compound synthesis
  • F. David
  • A. G. Maslennikov
  • V. P. Peretrukhin
Solution Chemistry


Electrochemical reduction of heavy elements from aqueous solution to amalgams was studied by radiopolarography and radiocoulometry. Mechanism of actinide reduction on a mercury pool is discussed through simulation techniques. Special emphasis is placed on redox reactions and potentials, kinetics of the process and effect of acetate and citrate ions as complexing agents. Three groups of actinides have been found. The first group represents actinium and from uranium to berkelium. Reduction occurs in the experimental conditions via an irreversible 3–0 process. The second group consists of the elements from fermium to nobelium, which are reduced in non-complexing solutions, or with acetate ions, similarly as barium and radium, via a reversible 2–0 reaction. Finally, californium and einsteinium behave as intermediate elements. It is noticeable that such groups are also observed in the actinide series by studying the structure of the trivalent aqua ions. On the basis of the above mentioned investigations of actinides and lanthanides several examples of electrochemical application are presented. Californium has been separated from preceding transuranium and lanthanide elements (except europium) by electrochemical reduction to amalgams in acetic solution. Separation factors from 25–90 are achieved with appropriate cathodic potentials. Similarly, this element could be separated from several heavier actinides with citric media. The electrochemical preparation of mixed uranium-nickel and uranium-tin amalgams from aqueous acetate solutions is investigated. The dependence of redox potentials of mixed amalgams on different atomic ratio U∶Ni and U∶Sn in amalgams is measured. The large shift of redox potentials of mixed amalgams to the positive direction is detected when the atomic ratio U∶Ni or U∶Sn in amalgams reaches 1∶5. The thermal distillation of mercury from mixed amalgams with different U∶Ni and U∶Sn atomic ratios was carried out and the products were identified by chemical analysis and X-ray diffraction. The intermetallics UNi5 and USn3 were prepared from mixed amalgams with the atomic ratios U∶Ni=1∶5 and U∶Sn=1∶3. The uranium and neptunium amalgams are prepared by electrolysis of aqueous acetate solutions and are processes into metals or nitrides U2N3, NpN by thermal distillation of mercury in vacuum or in nitrogen atmosphere.


Uranium Atomic Ratio Electrochemical Reduction Neptunium Transuranium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. MARTINOT, J. FUGER, in: Standard Potentials in Aqueous Solutions, A. J. BARD, J. JORDAN and R. PARSONS (Eds), 1984, p. 631.Google Scholar
  2. 2.
    K. SAMHOUN, F. DAVID, J. Inorg. Nucl. Chem., 41 (1979) 357.CrossRefGoogle Scholar
  3. 3.
    K. SAMHOUN, F. DAVID, J. Electroanal. Chem., 106 (1980) 161.CrossRefGoogle Scholar
  4. 4.
    F. DAVID, K. SAMHOUN, R. GUILLAUMONT, Rev. Chim. Min., 14 (1977) 199.Google Scholar
  5. 5.
    K. SAMHOUN, F. DAVID, R. L. HAHN, G. D. O'KELLEY, J. R. TARRANT, D. E. HOBARD, J. Inorg. Nucl. Chem., 41 (1979) 1749.CrossRefGoogle Scholar
  6. 6.
    F. DAVID, K. SAMHOUN, E. K. HULET, P. A. BAISDEN, R. DOUGAN, J. H. LANDRUM, R. W. LOUGHEED, J. F. WILD, G. D. O'KELLEY, J. Inorg. Nucl. Chem., 43 (1981) 2941.CrossRefGoogle Scholar
  7. 7.
    R. E. MEYER, J. McDOWELL, P. F. DITTNER, R. J. SILVA, J. R. TARRANT J. Inorg. Nucl. Chem., 38 (1976) 1171.CrossRefGoogle Scholar
  8. 8.
    F. DAVID, K. SAMHOUN, R. W. LOUGHEED, R. J. DOUGAN, J. F. WILD, J. H. LANDRUM, A. D. DOUGAN, E. K. HULET, to be published.Google Scholar
  9. 9.
    R. LUNDQVIST, E. K. HULET, P. A. BAISDEN, Acta Chem. Scand., A. 35, (1981) 653.Google Scholar
  10. 10.
    F. DAVID, P. DAVID, J. DUPLESSIS, B. FOUREST, P. ROGELET, Asilomar Conference, 1981, LBL 12441.Google Scholar
  11. 11.
    B. FOUREST, J. DUPLESSIS, F. DAVID, Radiochim. Acta, 36 (1984) 191.Google Scholar
  12. 12.
    B. FOUREST, J. DAVID, E. HALTIER, Lanthanide and Actinide Res., 2 (1988) 393.Google Scholar
  13. 13.
    F. DAVID, B. FOUREST, Report IPNO-DRE 88-27, 1988.Google Scholar
  14. 14.
    B. FOUREST, J. DUPLESSIS, F. DAVID, Radiochim. Acta, 46 (1989) 131.Google Scholar
  15. 15.
    F. DAVID, B. FOUREST, Proc. of the 19th Journées des Actinides, Madonna di Campiglio, 29–31 March 1989.Google Scholar
  16. 16.
    L. R. MORSS, in: The Chemistry of the Actinide Elements, J. J. KATZ, G. T. SEABORG, L. R. MORSS (Eds), 1984.Google Scholar
  17. 17.
    F. DAVID, C. R. Acad. Sc., Paris, 271 (1970) 440.Google Scholar
  18. 18.
    H. YAMANA, T. MITSUGASHIRA, Y. SHIOKAWA, A. SATO, S. SUZUKI, J. Radioanal. Chem., 76 (1983) 19.Google Scholar
  19. 19.
    M. DUFLO, K. SAMHOUN, Radiochem. Radioanal. Letters, 12 (1972) 131.Google Scholar
  20. 20.
    F. DAVID, Radiochem. Radioanal. Letters, 5 (1970) 279.Google Scholar
  21. 21.
    L. J. NUGENT, R. D. BAYBARZ, J. L. BURNETT, J. L. RYAN, J. Phys. Chem., 77 (1973) 1528.CrossRefGoogle Scholar
  22. 22.
    F. DAVID, M. HUSSONNOIS, Radiochem. Radioanal. Letters, 11 (1972) 1.Google Scholar
  23. 23.
    I. M. KOLTHOFF, J. J. LINGANE, in: Polarography, Vol. 2, Interscience, New York, 1952.Google Scholar
  24. 24.
    B. FOUREST, F. DAVID, R. GUILLAUMONT, P. ROGELET, K. SAMHOUN, J. Inorg. Nucl. Chem., 43 (1981) 1331.CrossRefGoogle Scholar
  25. 25.
    Stability Constants of Metal-Ion Complexes, The Chemical Society, Burlington House, W1 London, 1964, p. 478.Google Scholar
  26. 26.
    S. HUBERT, M. HUSSONNOIS, L. BRILLARD, G. GOBY, R. GUILLAUMONT, J. Inorg. Nucl. Chem., 36 (1974) 2361.CrossRefGoogle Scholar
  27. 27.
    C. MUSIKAS, R. G. HAIRE, J. R. PETERSON, J. Inorg. Nucl. Chem., 43 (1981) 2935.CrossRefGoogle Scholar
  28. 28.
    N. B. MIKHEEV, A. N. KAMENSKAIA, I. A. RUMER, V. I. SPITSYN, R. A. DYACHKOVA, N. A. ROSENKEVICH, Radiochem. Radioanal. Letters, 9 (1972) 247.Google Scholar
  29. 29.
    F. DAVID, in: Handbook on the Physics and Chemistry of the Actinides, Vol. 4, A. J. FREEMAN, C. KELLER (Eds), 1986, p. 97.Google Scholar
  30. 30.
    F. DAVID, V. F. PERETRUKHIN, A. G. MASLENNIKOV, B. FOUREST, Radiochim. Acta, 50 (1990) 151.Google Scholar
  31. 31.
    F. DAVID, B. FOUREST, J. DUPLESSIS, J. Nucl. Mat., 130 (1985) 273.CrossRefGoogle Scholar
  32. 32.
    A. J. BARD, K. S. V. SANTHANAM, in: A. J. BARD (Ed.), Electroanalytical Chemistry, Vol. 4, Marcel Dekker, New York, 1970, p. 215.Google Scholar
  33. 33.
    F. DAVID, G. BOUISSIERES, Inorg. Nucl. Chem. Lett., 4 (1968) 153.CrossRefGoogle Scholar
  34. 34.
    J. MALY, J. Inorg. Nucl. Chem., 31 (1969) 1007.CrossRefGoogle Scholar
  35. 35.
    J. HELOU, Nuclear Chemistry, Thesis, P. et M. Curie University, Paris, 29 April 1977.Google Scholar
  36. 36.
    N. FALCONI, R. RADICELLA, Rapport CEA-R-3384, 1968.Google Scholar
  37. 37.
    F. BOUÉ-RUELLE, G. BOUISSIERES, F. DAVID, Y. LEGOUX, R. MUXART, P. ROGELET, G. ZUPPIROLI, Rev. Chime Minérale, 11 (1974) 466.Google Scholar
  38. 38.
    S. GALES, E. HOURANI, M. HUSSONNOIS, J. P. SCHAPIRA, L STAB, M. VERGNES, Phys. Rev. Letters, 53 (1984) 579.CrossRefGoogle Scholar
  39. 39.
    Y. KOBAYASHI, A. SAITO, Inorg. Nucl. Sci. Technol., 12 (1975) 508.Google Scholar
  40. 40.
    L. C. WANG, H. C. LEE, W. C. LAI, C. T. CHANG, J. Inorg. Nucl. Chem., 40 (1978) 507.CrossRefGoogle Scholar
  41. 41.
    A. G. MASLENNIKOV, Yu. TERENTIEV, V. F. PERETRUKHIN, Soviet Radiochem., 26 (1984) 470.Google Scholar
  42. 42.
    D. DAUTET, Radiochemistry, Thesis Orsay, 1971.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • F. David
    • 1
  • A. G. Maslennikov
    • 2
  • V. P. Peretrukhin
    • 2
  1. 1.Groupe de RadiochimieInstitut de Physique NucléaireOrsayFrance
  2. 2.Institute of Physical Chemistry of the Academy of Sciences of USSRMoscowUSSR

Personalised recommendations