Advertisement

Latest achievements in the analytical chemistry of actinides

  • B. F. Myasoedov
  • I. A. Lebedev
Analytical Chemistry

Abstract

New methods for separation and determination of actinides, widely used in analysis of actinides in technological and environmental samples are reviewed. Special attention is paid to obtaining and stabilizing transplutonium elements. (TPE) in extreme oxidation states. Their use in analytical practice resulted in expanding possibilities of methods for separation and determination of TPE. Solvent extraction, sorption and extraction chromatography are the basic methods for separation of TPE. Solvent extraction, sorption and extraction chromatography are the basic methods for separation of TPE. Methods of separation in gas phase and some other methods such as precipitation and coprecipitation are applied, however, to a lesser degree. Trends of development of these methods including those of various types of membrane extraction that succeeded in separation of TPE in both trivalent and other valence states have been shown. Attention is paid mainly to consideration of modern methods for determination of actinides, special distinction of such methods being low limits of determination, high precision and selectivity. Alpha- and beta-spectrometric methods with semiconductor detectors are the most advanced among various methods based on registration of nuclear radiation. Tremendous success has been achieved in development of emission-spectrometric methods for determination of trace amounts of actinides and various impure elements occurring in samples of actinides. Sensitive mass-spectrometric methods are widely used for determination of both isotope composition and content of elements in various samples including those which are highly radioactive. More simple and precise titrimetric methods based on using oxidizing-reducing or complexing agents are developed successfully. A large number of coulometric methods for determination of americium and berkelium, characterizing high precision and selectivity as well as luminescence methods have been developed.

Keywords

Solvent Extraction Environmental Sample Americium Impure Element Semiconductor Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. KATZ, G. T. SEABORG, L. R. MORSS, The Chemistry of the Actinide Elements, Chapman and Hall, London-New York, 1986.Google Scholar
  2. 2.
    W. W. SCHULZ, J. D. NAVRATIL, in: Recent Development in Separation Sciences, Vol. 7, CRC Press, Boca Raton, Fla., 1988, p. 124.Google Scholar
  3. 3.
    C. MUSIKAS, M. GERMAIN, ISEC '88 Papers, Vol. 4, Moscow, 1988, p. 124.Google Scholar
  4. 4.
    N. B. MIKHEEV, B. F. MYASOEDOV, in: Handbook on the Physics and Chemistry of the Actinides, Vol. 3, Elsevier, Amsterdam, 1985, p. 347.Google Scholar
  5. 5.
    L. I. GUSEVA, G. S. TIKHOMIROVA, J. Radioanal. Nucl. Chem., 121 (1988) 345.Google Scholar
  6. 6.
    L. I. GUSEVA, G. S. TIKHOMIROVA, G. V. BUKLANOV, ZEN ZIN PHAV, I. A. LEBEDEV, N. V. KATARGIN, B. F. MYASOEDOV, J. Radioanal. Nucl. Chem., 117 (1987) 205.Google Scholar
  7. 7.
    N. B. MIKHEEV, A. N. KAMENSKAYA, N. A. KONOVALOVA, I. A. RUMER, S. A. KULYUKHIN, Radiokhimiya, 25 (1985) 158.Google Scholar
  8. 8.
    A. P. NOVIKOV, T. V. BUNINA, B. F. MYASOEDOV, Radiokhimiya, 30 (1988) 158.Google Scholar
  9. 9.
    R. GUILLAUMONT, P. CHEVALLIER, J. P. ADLOFF, Radiochim. Acta, 40 (1986) 191.Google Scholar
  10. 10.
    A. P. CHETVERIKOV, V. Ya. GABESKIRIYA, V. V. TIKHOMIROV, Radiokhimiya, 21 (1979) 132.Google Scholar
  11. 11.
    V. V. TIKHOMIROV, A. P. CHETVERIKOV, V. Ya. GABESKIRIYA, Radiokhimiya, 22 (1980) 435.Google Scholar
  12. 12.
    V. V. TIKHOMIROV, V. Ya. GABESKIRIYA, A. P. CHETVERIKOV, Radiokhimiya, 23 (1981) 595.Google Scholar
  13. 13.
    V. V. TIKHOMIROV, A. P. CHETVERIKOV, V. Ya. GABESKIRIYA, Radiokhimiya, 23 (1981) 896.Google Scholar
  14. 14.
    N. TRAUTMANN, P. PEUSER, H. RIMKE, P. SATTELBERGER, G. HERRMANN, F. AMES, U. KRONERT, W. RUSTER, J. BONN, H.-J. KLUGE, E.-W. OTTEN, J. Less-Common Met., 122 (1986) 533.Google Scholar
  15. 15.
    S. M. MILLER, Report UCRL-53373, Lawrence Livermore Lab., 1982.Google Scholar
  16. 16.
    V. B. GLIVA, Yu. P. NOVIKOV, B. F. MYASOEDOV, J. Radioanal. Nucl. Chem., 135 (1989) 307.Google Scholar
  17. 17.
    J. V. BEITZ, J. P. HESSLER, Nucl. Technol., 51 (1980) 169.Google Scholar
  18. 18.
    T. A. DEMJANOVA, A. V. STEPANOV, A. S. BABAEV, V. M. ALEKSANDRUK, Radiokhimiya, 28 (1986) 494.Google Scholar
  19. 19.
    A. B. YUSOV, V. P. PERMINOV, N. N. KROT, Radiokhimiya, 28 (1986) 72.Google Scholar
  20. 20.
    J. V. BEITZ, D. W. WESTER, C. W. WILLIAMS, J. Less-Common Met., 93 (1983) 331.Google Scholar
  21. 21.
    G. KOEHLY, Anal. Chim. Acta, 33 (1965) 418.Google Scholar
  22. 22.
    J. R. STOKELY, W. D. SHULTZ, Anal. Chim. Acta, 45 (1969) 417.Google Scholar
  23. 23.
    V. Ya. FRENKEL, Yu. M. KULYAKO, I. A. LEBEDEV, T. I. TROFIMOV, B. F. MYASOEDOV, Zh. Analit. Khim., 35 (1980) 1759.Google Scholar
  24. 24.
    R. C. PROPST, Anal. Chem., 41 (1969) 910.Google Scholar
  25. 25.
    Yu. M. KULYAKO, T. I. TROFIMOV, V. Ya. FRENKEL, I. A. LEBEDEV, B. F. MYASOEDOV, Zh. Analit. Khim., 36 (1981) 2343.Google Scholar
  26. 26.
    T. I. TROFIMOV, Yu. M. KULYAKO, I. A. LEBEDEV, B. F. MYASOEDOV, Zh. Analit. Khim., 41 (1986) 1051.Google Scholar
  27. 27.
    P. L. KHIZHNYAK, V. Ya. FRENKEL, I. A. LEBEDEV, B. F. MYASOEDOV, Zh. Analit. Khim., 41 (1986) 1390.Google Scholar
  28. 28.
    S. A. PEREVALOV, Yu. M. KULYAKO, I. A. LEBEDEV, B. F. MYASOEDOV, Zh. Analit. Khim., 41, (1986) 838.Google Scholar
  29. 29.
    C. BERGEY, Microchim. Acta, 11 (1981) 207.Google Scholar
  30. 30.
    J. E. McCRACKEN, J. R. STOKELY, R. D. BAYBARZ, C. E. BEMIS, R. EBY, J. Inorg. Nucl. Chem., 33 (1971) 3251.Google Scholar
  31. 31.
    R. C. PROPST, M. L. HYDER, J. Inorg. Nucl. Chem., 32 (1970) 2205.Google Scholar
  32. 32.
    G. A. TIMOFEEV, V. M. CHISTYAKOV, E. A. ERIN, Radiokhimiya, 28 (1986) 498.Google Scholar
  33. 33.
    G. A. TIMOFEEV, G. A. SIMAKIN, P. F. BAKLANOVA, G. F. KUZNETSOV, V. I. IVANOV, Zh. Analit. Khim., 31 (1976) 2337.Google Scholar
  34. 34.
    G. A. SIMAKIN, G. A. TIMOFEEV, N. A. VLADIMIROVA, Radiokhimiya, 28 (1977) 560.Google Scholar
  35. 35.
    G. A. SIMAKIN, P. F. BAKLANOVA, G. F. KUZNETSOV, A. V. CHERNOV, Zh. Analit. Khim., 29 (1974) 1585.Google Scholar
  36. 36.
    L. M. FROLOVA, V. M. VITYUTNEV, V. Ya. VASILYEV, Radiokhimiya, 28 (1986) 385.Google Scholar
  37. 37.
    G. J. HAM, G. N. STRADLING, S. E. BREADMORE, Anal. Chem., 49 (1977) 1268.PubMedGoogle Scholar
  38. 38.
    K. SEKINE, T. IMAI, A. KASAI, Talanta, 34 (1987) 567.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • B. F. Myasoedov
    • 1
  • I. A. Lebedev
    • 1
  1. 1.V. I. Vernadsky Institute of Geochemistry and Analytical ChemistryUSSR Academy of SciencesMoscow(USSR)

Personalised recommendations