Skip to main content
Log in

The pre-Fermi natural reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The origin of the concept of a large-scale nuclear chain reaction occurring in nature can be traced back to the ideas expressed byAston in 1922 and byJoliot in 1935. Geochemical investigations on hot springs, which have been carried out at the University of Tokyo since the 1930s, played a key role in the early development of the theory of natural reactor. Results obtained from the studies, which have been carried out in various countries since the 1972 discovery of the Oklo phenomenon, reveal the fact that the natural reactors at Oklo may have indeed operated in a manner quite similar to the geysers or intermittent hot springs. A careful examination of the isotopic compositions of the so-called anomalous xenon from the Oklo reactor suggests that the natural reactors were operating at temperatures between the boiling point of iodine (183°C) and the melting point of tellurium (452°C), periodically being turned on and off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Aston, Mass Spectra and Isotopes, Nobel Lecture, December 12, 1922.

  2. F. Joliot, Chemical Evidence of the Transmutation of Elements, Nobel Lecture, December 12, 1935.

  3. R. Rhodes, The Making of the Atomic Bomb, Simon and Schuster, New York, 1986, p. 664.

    Google Scholar 

  4. Y. Shibata, K. Noguchi, O. Kaneko, J. Chem. Soc. Japan, 58 (1937) 1013.

    Google Scholar 

  5. K. Noguchi, R. Fukushima, J. Chem. Soc. Japan, 61 (1940) 677.

    Google Scholar 

  6. O. Hahn, F. Strassmann, Naturwissenschaften, 27 (1939) 11.

    Article  Google Scholar 

  7. J. Noetzlin, Comptes rendus, 208 (1939) 1662; Phys. Radium, 1 (1940) 8, 90, 124.

    Google Scholar 

  8. S. Flügge, Naturwissenschafften, 27 (1939) 401.

    Google Scholar 

  9. S. Oana, K. Kuroda, Bull. Chem. Soc. Japan, 17 (1942) 397.

    Google Scholar 

  10. E. Fermi, Science, 105 (1947) 27.

    Google Scholar 

  11. P. K. Kuroda, J. Chem. Phys., 25 (1956) 781, 1295.

    Article  Google Scholar 

  12. W. Burkhardt, Naturwissenschafften, 42 (1956) 534.

    Article  Google Scholar 

  13. W. Burkhardt, Annalen der Physik, 20 (1957) 184.

    Google Scholar 

  14. R. Bodu, H. Bouzigues, N. Morin, J. P. Pfiffelmann, C. R. Acad. Sci. Paris, 275D (1972) 1731.

    Google Scholar 

  15. M. Neuilly, J. Bussac, C. Frejacques, G. Nief, G. Vendryes, J. Yvon, C. R. Acad. Sc. Paris, 275D (1972) 1847.

    Google Scholar 

  16. G. Baudin, C. Blain, R. Hagemann, M. Kremer, M. Lucas, L. Merlivat, R. Molina, G. Nief, F. Prosts-Marechal, F. Regnaud, E. Roth, C. R. Acad. Sc. Paris, 275D (1972) 2291.

    Google Scholar 

  17. The Oklo Phenomenon, International Atomic Energy Agency, Vienna, 1975.

  18. Yu. A. Shukolyukov, G. Sh. Ashkinadze, A. B. Verkhovskii, Atomnaya Energiya, 41 (1976) 53.

    Google Scholar 

  19. Yu. A. Shukolyukov, T. W. Min, Geokhimiya, No. 11 (1977) 1604.

    Google Scholar 

  20. Yu. A. Shukolyukov, D. V. Minh, Geokhimiya, No. 12 (1977) 1763.

    Google Scholar 

  21. N. Takaoka, Mass Spectroscopy, 20 (1972) 287.

    Google Scholar 

  22. Tang Ming, E. Anders, Geochim. Cosmochim. Acta, 52 (1988) 1235, 1245.

    Article  Google Scholar 

  23. J. H. Reynolds, G. Turner, J. Geophys. Res. 69 (1964) 3263.

    Google Scholar 

  24. T. J. Kennett, H. G. Thode, Can. J. Phys., 38 (1960) 945.

    Google Scholar 

  25. R. Naudet, Natural Fission Reactors. International Atomic Energy Agency, Vienna, 1978, p. 589.

    Google Scholar 

  26. R. Openshaw, M. Pagel, B. Poty, Natural Fission Reactors, International Atomic Energy Agency, Vienna, 1978, p. 267.

    Google Scholar 

  27. R. J. Vidale, Natural Fission Reactors, International Atomic Energy Agency, Vienna, 1978, p. 235.

    Google Scholar 

  28. Z. Bilanovic, A. A. Harms, Nucl. Sci. Engn., 91 (1985) 286.

    Google Scholar 

  29. P. K. Kuroda, The Early Japanese Program, presented at the 50 Years with Nuclear Fission Conference, 26–28 April, 1989.

  30. P. K. Kuroda, Plutonium-244 Dating of the Early Solar System, presented at the 50 Years With Nuclear Fission Conference, 26–28 April, 1989.

  31. W. A. Myers, P. K. Kuroda, Plutonium-244 Fission Xenon in the Solar System, presented at the 50 Years With Nuclear Fission Conference, 26–28 April, 1989.

  32. P. K. Kuroda, Naturwissenschaften, 70 (1983) 539.

    Article  Google Scholar 

  33. P. K. Kuroda, The Origin of the Chemical Elements and the Oklo Phenomenon, Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 1.

    Google Scholar 

  34. P. K. Kuroda, Acc. Chem. Res. 12 (1979) 73.

    Article  Google Scholar 

  35. P. K. Kuroda, Plutonium-244 in Nature, The McGraw-Hill Yearbook of Science and Technology, Feature Article, 1973, p. 10.

  36. P. K. Kuroda, Naturally Occurring Nuclear Reactor, The McGraw-Hill Yearbook of Science and Technology, Feature Article, 1979, p. 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, P.K. The pre-Fermi natural reactor. Journal of Radioanalytical and Nuclear Chemistry, Articles 142, 101–112 (1990). https://doi.org/10.1007/BF02039455

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02039455

Keywords

Navigation