Journal of Radioanalytical and Nuclear Chemistry

, Volume 142, Issue 1, pp 101–112 | Cite as

The pre-Fermi natural reactor

  • P. K. Kuroda
Article

Abstract

The origin of the concept of a large-scale nuclear chain reaction occurring in nature can be traced back to the ideas expressed byAston in 1922 and byJoliot in 1935. Geochemical investigations on hot springs, which have been carried out at the University of Tokyo since the 1930s, played a key role in the early development of the theory of natural reactor. Results obtained from the studies, which have been carried out in various countries since the 1972 discovery of the Oklo phenomenon, reveal the fact that the natural reactors at Oklo may have indeed operated in a manner quite similar to the geysers or intermittent hot springs. A careful examination of the isotopic compositions of the so-called anomalous xenon from the Oklo reactor suggests that the natural reactors were operating at temperatures between the boiling point of iodine (183°C) and the melting point of tellurium (452°C), periodically being turned on and off.

Keywords

Physical Chemistry Inorganic Chemistry Iodine Melting Point Boiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Aston, Mass Spectra and Isotopes, Nobel Lecture, December 12, 1922.Google Scholar
  2. 2.
    F. Joliot, Chemical Evidence of the Transmutation of Elements, Nobel Lecture, December 12, 1935.Google Scholar
  3. 3.
    R. Rhodes, The Making of the Atomic Bomb, Simon and Schuster, New York, 1986, p. 664.Google Scholar
  4. 4.
    Y. Shibata, K. Noguchi, O. Kaneko, J. Chem. Soc. Japan, 58 (1937) 1013.Google Scholar
  5. 5.
    K. Noguchi, R. Fukushima, J. Chem. Soc. Japan, 61 (1940) 677.Google Scholar
  6. 6.
    O. Hahn, F. Strassmann, Naturwissenschaften, 27 (1939) 11.CrossRefGoogle Scholar
  7. 7.
    J. Noetzlin, Comptes rendus, 208 (1939) 1662; Phys. Radium, 1 (1940) 8, 90, 124.Google Scholar
  8. 8.
    S. Flügge, Naturwissenschafften, 27 (1939) 401.Google Scholar
  9. 9.
    S. Oana, K. Kuroda, Bull. Chem. Soc. Japan, 17 (1942) 397.Google Scholar
  10. 10.
    E. Fermi, Science, 105 (1947) 27.Google Scholar
  11. 11.
    P. K. Kuroda, J. Chem. Phys., 25 (1956) 781, 1295.CrossRefGoogle Scholar
  12. 12.
    W. Burkhardt, Naturwissenschafften, 42 (1956) 534.CrossRefGoogle Scholar
  13. 13.
    W. Burkhardt, Annalen der Physik, 20 (1957) 184.Google Scholar
  14. 14.
    R. Bodu, H. Bouzigues, N. Morin, J. P. Pfiffelmann, C. R. Acad. Sci. Paris, 275D (1972) 1731.Google Scholar
  15. 15.
    M. Neuilly, J. Bussac, C. Frejacques, G. Nief, G. Vendryes, J. Yvon, C. R. Acad. Sc. Paris, 275D (1972) 1847.Google Scholar
  16. 16.
    G. Baudin, C. Blain, R. Hagemann, M. Kremer, M. Lucas, L. Merlivat, R. Molina, G. Nief, F. Prosts-Marechal, F. Regnaud, E. Roth, C. R. Acad. Sc. Paris, 275D (1972) 2291.Google Scholar
  17. 17.
    The Oklo Phenomenon, International Atomic Energy Agency, Vienna, 1975.Google Scholar
  18. 18.
    Yu. A. Shukolyukov, G. Sh. Ashkinadze, A. B. Verkhovskii, Atomnaya Energiya, 41 (1976) 53.Google Scholar
  19. 19.
    Yu. A. Shukolyukov, T. W. Min, Geokhimiya, No. 11 (1977) 1604.Google Scholar
  20. 20.
    Yu. A. Shukolyukov, D. V. Minh, Geokhimiya, No. 12 (1977) 1763.Google Scholar
  21. 21.
    N. Takaoka, Mass Spectroscopy, 20 (1972) 287.Google Scholar
  22. 22.
    Tang Ming, E. Anders, Geochim. Cosmochim. Acta, 52 (1988) 1235, 1245.CrossRefGoogle Scholar
  23. 23.
    J. H. Reynolds, G. Turner, J. Geophys. Res. 69 (1964) 3263.Google Scholar
  24. 24.
    T. J. Kennett, H. G. Thode, Can. J. Phys., 38 (1960) 945.Google Scholar
  25. 25.
    R. Naudet, Natural Fission Reactors. International Atomic Energy Agency, Vienna, 1978, p. 589.Google Scholar
  26. 26.
    R. Openshaw, M. Pagel, B. Poty, Natural Fission Reactors, International Atomic Energy Agency, Vienna, 1978, p. 267.Google Scholar
  27. 27.
    R. J. Vidale, Natural Fission Reactors, International Atomic Energy Agency, Vienna, 1978, p. 235.Google Scholar
  28. 28.
    Z. Bilanovic, A. A. Harms, Nucl. Sci. Engn., 91 (1985) 286.Google Scholar
  29. 29.
    P. K. Kuroda, The Early Japanese Program, presented at the 50 Years with Nuclear Fission Conference, 26–28 April, 1989.Google Scholar
  30. 30.
    P. K. Kuroda, Plutonium-244 Dating of the Early Solar System, presented at the 50 Years With Nuclear Fission Conference, 26–28 April, 1989.Google Scholar
  31. 31.
    W. A. Myers, P. K. Kuroda, Plutonium-244 Fission Xenon in the Solar System, presented at the 50 Years With Nuclear Fission Conference, 26–28 April, 1989.Google Scholar
  32. 32.
    P. K. Kuroda, Naturwissenschaften, 70 (1983) 539.CrossRefGoogle Scholar
  33. 33.
    P. K. Kuroda, The Origin of the Chemical Elements and the Oklo Phenomenon, Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 1.Google Scholar
  34. 34.
    P. K. Kuroda, Acc. Chem. Res. 12 (1979) 73.CrossRefGoogle Scholar
  35. 35.
    P. K. Kuroda, Plutonium-244 in Nature, The McGraw-Hill Yearbook of Science and Technology, Feature Article, 1973, p. 10.Google Scholar
  36. 36.
    P. K. Kuroda, Naturally Occurring Nuclear Reactor, The McGraw-Hill Yearbook of Science and Technology, Feature Article, 1979, p. 1.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • P. K. Kuroda
    • 1
  1. 1.Department of ChemistryUniversity of NevadaLas Vegas(USA)

Personalised recommendations