Advertisement

Multitracer study on adsorption of metal ions on α-Fe2O3

  • S. Ambe
  • M. Iwamoto
  • H. Maeda
  • F. Ambe
Radiotracer Technology and Nuclear Analytical Technology

Abstract

pH dependence of the adsorption of Na, Sc, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, and Pd on α-Fe2O3 from a 0.1 mol dm−3 NaCl solution was studied by using a multitracer technique. Desorption of the metal ions from the α-Fe2O3 with the adsorbed metal ions at pH 11 was also studied by lowering the pH of the suspensions. The desorption curve of each element was in good agreement with the adsorption curve except for Ru and Rh under conditions studied. Adsorption kinetics showed that the adsorption of most metal ions increases with shaking time before an adsorption equilibrium is attained. An increase in the adsorption was also observed with an elevation in temperature for the elements, suggesting that the adsorption is involved in chemisorption.

Keywords

Physical Chemistry Inorganic Chemistry Chemisorption Adsorption Equilibrium Adsorption Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. JENNE, Chemical Modeling in Aqueous Systems; ACS Symposium Series 93; American Chemical Society: Washington, DC, 1979.Google Scholar
  2. 2.
    P. H. TEWARI, Adsorption from Aqueous Solutions; Plenum: New York, 1981.Google Scholar
  3. 3.
    J. A. DAVIS, K. F. HAYES, Geochemical Processes at Mineral Surfaces; ACS symposium Series 323; American Chemical Society: Washington, DC, 1986.Google Scholar
  4. 4.
    S. AMBE, S. Y. CHEN, Y. OHKUBO, Y. KOBAYASHI, M. IWAMOTO, M. YANOKURA, N. TAKEMATSU, F. AMBE, J. Radioanal. Nucl. Chem.,195 (1995) 297.CrossRefGoogle Scholar
  5. 5.
    S. AMBE, S. Y. CHEN, Y. OHKUBO, Y. KOBAYASHI, M. IWAMOTO, F. AMBE, Chem. Lett., (1992) 1059.Google Scholar
  6. 6.
    S. AMBE, Langmuir,3 (1987) 489.CrossRefGoogle Scholar
  7. 7.
    C. F. BAES, JR, R. E. MESMER, The Hydrolysis of Cations; Krieger: Florida, 1986.Google Scholar
  8. 8.
    J. A. DAVIS, J. O. LECKIE, In Chemical Modeling in Aqueous Systems; E. A. Jenne, Ed.: ACS Symposium Series 93; American Chemical Society: Washington, DC, 1979; p 299.Google Scholar
  9. 9.
    M. M. BENJAMIN, N. S. BLOOM, In Adsorption from Aqueous Solutions; P. H. Tewari, Ed.; Plenum: New York, 1981; p 41.Google Scholar
  10. 10.
    J. A. DAVIS, J. O. LECKIE, J. Colloid. Interface Sci.,74 (1980) 32.CrossRefGoogle Scholar
  11. 11.
    G. A. PARKS, P. L. DE BRUYN, J. Phys. Chem.,66 (1962) 967.Google Scholar
  12. 12.
    Y. OHKUBO, Y. KOBAYASHI, S. AMBE, K. HARASAWA, M. TAKEDA, S. SHIBATA, K. ASAI, T. OKADA, F. AMBE, Chem. Lett., (1992) 2069.Google Scholar
  13. 13.
    S. MUSIC, M. RISTIC, J. Radioanal. Nucl. Chem.,120, (1988) 289CrossRefGoogle Scholar
  14. 14.
    M. M. BHUTANI, A. K. MITARA, R. KUMARI, J. Radioanal. Nucl. Chem.,157 (1992) 75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • S. Ambe
    • 1
  • M. Iwamoto
    • 1
  • H. Maeda
    • 1
  • F. Ambe
    • 1
  1. 1.The Insitute of Physical and Chemical Research (RIKEN)SaitamaJapan

Personalised recommendations