Journal of Radioanalytical and Nuclear Chemistry

, Volume 198, Issue 1, pp 247–252 | Cite as

Contribution to the cyclotron targetry

IV. Measurement of18F,21Na, and23Ne production yields in deuteron induced reaction on neon gas
  • F. Helus
  • V. Uhlir
  • H. Gasper
  • W. Maier-Borst
Short Communications


The radionuclide18F is of considerable interest for biochemical and physiological studies using positron emission tomography (PET). Of all methods used for its production only two have found wide application since their yield is high enough and the chemical form of the product is suitable for fluorination of organic compounds. Proton irradiation of enriched water using18O(p,n)18F reaction and deuteron bombardment of gaseous neon20Ne(d,α)18F process are the commonly used effective cyclotron production procedures. In our previous papers1,2 the different reactions and target parameters of the deuteron irradiation of neon gas were reported. In the present work, the production yields for the (d,α), (d,n) and (d,p) reactions were determined.


Positron Emission Tomography Inorganic Chemistry Organic Compound Production Yield Neon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. HELUS, V. UHLIR, et al., J. Radioanal. Nucl. Chem., 182 (1994) 237.Google Scholar
  2. 2.
    F. HELUS, V. UHLIR et al., J. Radioanal. Nucl. Chem., 182 (1994) 445.Google Scholar
  3. 3.
    M. GUILLAUME, Nucl. Instr. Methods, 136 (1976) 185.Google Scholar
  4. 4.
    T. NOZAKI, Int. J. Appl. Radioisotopes, 25 (1974) 393.Google Scholar
  5. 5.
    H. BACKHAUSEN, G. STÖCKLIN, R. WEINREICH, Radiochim. Acta, 29 (1981) 1.Google Scholar
  6. 6.
    D. GANDARIUS-CRUZ, K. OKAMOTO, Report IAEA October 1988; INDC (NDS)-209/GZGoogle Scholar
  7. 7.
    K. A. KELLER, J. LANGE, H. MÜNZEL, in: LANDOLT-BÖRNSTEIN, Num. Data and Funct. Relationship in Science and Technol., New Series, Group I, Vol. 5, Part c, Berlin, Heidelberg, New York, 1974.Google Scholar
  8. 8.
    K. TAKAMATSU, J. Phys. Soc. Japan, 17 (1962) No. 6, 896.Google Scholar
  9. 9.
    C. MORAND, H. BEAUMEVIEILLE, A DAUCHY, G. DUMAZET, M. LAMBERT, C. MEYNADIER, Il Nuovo Cimento, 6A (1971) 380.Google Scholar
  10. 10.
    E. F. PESSOA, R. L. DANGLE, N. UETA, O. SALA, Nucl. Phys., 68 (1965) 337.Google Scholar
  11. 11.
    J. B. CUMMING, National Academy of Sciences, National Research Council, Nuclear Science Report No. NAS NS-3107, 1962 (unpublished).Google Scholar
  12. 12.
    F. HELUS, V. UHLIR et al., J. Radioanal. Nucl. Chem., 196 (1995) 107.Google Scholar
  13. 13.
    M. OSELKA, J. E. GINDLER, A. M. FRIEDMAN, J. Appl. Rad. Isotopes, 28 (1977) 804.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • F. Helus
    • 1
  • V. Uhlir
    • 1
  • H. Gasper
    • 1
  • W. Maier-Borst
    • 1
  1. 1.Deutsches KrebsforschungszentrumHeidelberg(Germany)

Personalised recommendations