Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 183, Issue 2, pp 371–377 | Cite as

Studies on the separation of cesium-137 from the acidic fission product waste solutions on a new complex inorganic exchanger (Zr−P-APW)

  • V. N. Reddy
  • J. Satyanarayana
  • G. S. Murty
  • A. Dash
Article

Abstract

A new inorganic exchanger zirconiumphosphate-ammonium phosphotungstate (Zr−P-APW) has been synthesized in granular form suitable for column work. TheK d values for different metal ions were determined and the affinity order was found to be Cs≫Rb>Zr>Ce> rare earths. Sodium exchange capacity, pH-titration curve, breakthrough capacities for cesium (both in pure HNO3 and in different types of simulated nuclear wastes) and elution of cesium from the Zr−P-APW column have been studied. A selective method for the removal of cesium from other radioactive fission products has been developed. The exchanger was found to be stable to a γ-radiation dose of 108 rads in presence and absence of 2M nitric acid.

Keywords

Nitric Acid Cesium Exchange Capacity Fission Product Nuclear Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. BANES, Industrial Uses of Large Irradiation Sources in Industries, IAEA, Salzburg, 1963, p. 243.Google Scholar
  2. 2.
    Martin Co, Isotope sources: A compendium, USAEA Report MND-P-2581 (Part I to IV).Google Scholar
  3. 3.
    J. E. CARDEN, Isotopes Radiat. Technol., 4 (1967) No. 2, 172.Google Scholar
  4. 4.
    A. CLEARFIELD, Inorganic Ion Exchange Materials, CRC Press, Boca Raton, Florida, 1982.Google Scholar
  5. 5.
    A. DYER, F. H. KADHIM, J. Radioanal. Nucl. Chem., 131 (1989) 161.CrossRefGoogle Scholar
  6. 6.
    J. LEHTO, A. CLEARFIELD, J. Radioanal. Nucl. Chem., 118 (1987) 1.Google Scholar
  7. 7.
    B. SARKAR, S. BASU, Indian J. Chem., Sect. A, 28A(4) (1989) 346.Google Scholar
  8. 8.
    M. QURESHI, J. P. GUPTA, J. Chromatogr., 62 (1971) 439.CrossRefGoogle Scholar
  9. 9.
    C. B. AMPHLETT, Proc. Conf. on Peaceful Uses of Atomic Energy, Geneva, 1968, p. 28.Google Scholar
  10. 10.
    B. T. KENNA, Rep. SAND-79-0199 from Energy Res. Abstract, 5(10) 1980, p. 1080.Google Scholar
  11. 11.
    K. K. S. PILLAY, J. Radioanal. Nucl. Chem., 102 (1986) 247.CrossRefGoogle Scholar
  12. 12.
    V. KOURIM et al., At. Energy. Rev., 12 (1974) 215.PubMedGoogle Scholar
  13. 13.
    D. K. DAVIS, J. A. PARTRIDGE, O. H. KOSKI, Rept. BNWL-2063, 1977.Google Scholar
  14. 14.
    H. T. MATSUDA, A. ABRAO, IPEN. Pub-13 Jun., 1980.Google Scholar
  15. 15.
    S. ZHAOXIANG et al., IAEA, Tec. DOC-337 July, 1985.Google Scholar
  16. 16.
    I. I. L. CUNHA, L. G. ANDRADE E SILVA, J. Radioanal. Nucl. Chem., 104 (1986) 293.Google Scholar
  17. 17.
    J. KRTIL, J. Inorg. Nucl. Chem., 19 (1961) 298.CrossRefGoogle Scholar
  18. 18.
    T. S. MURTHY et al., Rept. BARC-893, 1977.Google Scholar
  19. 19.
    S. DUTTA ROY, M. SANKAR DAS, Anal. Chim. Acta, 51 (1970) 509.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • V. N. Reddy
    • 1
  • J. Satyanarayana
    • 1
  • G. S. Murty
    • 1
  • A. Dash
    • 2
  1. 1.Nuclear Chemistry Section, School of ChemistryAndhra UniversityVisakhapatnam(India)
  2. 2.Isotope DivisionBARCBombay(India)

Personalised recommendations