Skip to main content
Log in

Compton suppression neutron activation analysis: Past, present and future

  • Review
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Conclusions

In this work a review of the development of compton suppression is presented. It was shown that the application of Compton-suppression counting in instrumental NAA reduces the detection limits and improves the accuracy for a list of elements by substantial reduction of the background of the γ-spectroscopy. Results for certified reference materials obtained through the use of Compton suppression are normally more accurate and in agreement with the published values. Compton suppression is particularly helpful for low level concentrations in environmental samples to those elements which exhibit severe special interferences in the normal NAA counting. A list of the elements with isotopes having single or close to single γ-ray decay schemes and which could benefit from Compton-suppression counting is presented. Also, evaluation is made regarding the reliability of Compton suppression with increase in the overall dead-time of the counting. It was concluded that this method does not provide accurate quantification of the isotopes when the overall dead-time exceeds the 10% range. Investigation of the natural background was performed with Compton suppression for the purpose of neutron activation analysis application. The method presented proves to broaden the application of NAA and helps in its competition for simplicity, accuracy and reliability with the modern methods of elemental analysis. Future application of coincidence spectrometry in activation analysis should include better enclosing of the primary detector, utiliza5tion of x-ray and well type detectors, γ-γ, β-γ, and β-γ-γ coincidence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. HEVESY, H. LEVI, Mathematisk-Fysiske Meddelelser, 14 (1936) 3.

    Google Scholar 

  2. F. METZGER, M. DEUTSCH, Phys. Rev., 78 (1950) 551.

    Article  Google Scholar 

  3. R. ALBERT, Rev. Sci. Instr., 24 (1952) 1096.

    Article  Google Scholar 

  4. R.E. CONNALLY, Rev. Sci. Instr., 24 (1953) 458.

    Article  Google Scholar 

  5. P.R. BELL, Science, 120 (1954) 625.

    PubMed  Google Scholar 

  6. K.I. ROULSTON, S.I.H. NAQVI, Rev. Sci. Instr., 27 (1956) 830.

    Article  Google Scholar 

  7. C.C. TRAIL, S. RABOY, Rev. Sci. Instr., 30 (1959) 425.

    Article  Google Scholar 

  8. J. KANTELE, R.W. FINK, Nucl. Instr. Meth., 13 (1961) 141.

    Article  Google Scholar 

  9. J. KANTELE, R.W. FINK, Nucl. Instr. Meth., 15 (1962) 69.

    Article  Google Scholar 

  10. J. KANTELE, Nucl. Instr. Meth., 17 (1962) 33.

    Article  Google Scholar 

  11. J. KANTELE, O.J. MARTTILA, Nucl. Instr. Meth., 27 (1964) 235.

    Article  Google Scholar 

  12. J. KANTELE, O.J. MARTTILA, J. HATTULA, Nucl. Instr. Meth., 39 (1966) 194.

    Article  Google Scholar 

  13. S. TANAKA, K. SAKAMOTO, J. TAKAGI, Nucl. Instr Meth., 56 (1967) 319.

    Article  Google Scholar 

  14. Y. SEVER, J. LIPPERT, Nucl. Instr. Meth., 33 (1965) 347.

    Article  Google Scholar 

  15. C. BROUDE, O. HÄUSSER, H. MALM, J.F. SHARPEY-SCHAFER, T.K. ALEXANDER, Nucl. Instr. Meth., 69 (1969) 29.

    Article  Google Scholar 

  16. H. HICK, R. PEPELNIK, Nucl. Instr. Meth., 68 (1969) 240.

    Article  Google Scholar 

  17. J. KONIJN, P.F.A. GOUDSMIT, E.W.A. LINGEMAN, Nucl. Instr. Meth., 109 (1973) 83.

    Article  Google Scholar 

  18. R. BEETZ, W.L. POSTHUMUS, F.W.N. DE BOER, J.L. MAARLEVELD, A. VAN DER SCHAAF, J. KONIJN, Nucl. Instr. Meth., 145 (1977) 353.

    Article  Google Scholar 

  19. T. LINDBLAD, Nucl. Instr. Meth., 154 (1978) 53.

    Article  Google Scholar 

  20. S.G. PRUSSIN, M.D. PERRY, E. PEKRUL BICKNESE, J.F. LAMB, Nucl. Instr. Meth. Phys. Res., A242 (1986) 410.

    Google Scholar 

  21. S. KUBONO, M.H. TANAKA, H. KAWAKAMI, K. SUEKI, H. MIYATAKE, T. NOMURA, K. MORITA, M. ISHIHARA, S. KATO, C. KONNO, A. SAKAGUCHI, Nucl. Instr. Meth. Phys. Res., A251 (1986) 74.

    Google Scholar 

  22. F.S. DIETRICH, D.W. HEIKKINEN, Nucl. Instr. Meth., 155 (1978) 103.

    Article  Google Scholar 

  23. V. IONESCU, J. KERN, C. NORDMANN, S. OLBRICH, Ch. RHÊME, Nucl. Instr. Meth., 163 (1979) 395.

    Article  Google Scholar 

  24. H.J.M. AARTS, G.A.P. ENGELBERTINK, C.J. VAN DER POEL, D.E.C. SCHERPENZEEL, H.F.R. ARCISZEWSKI, Nucl. Instr. Meth., 172 (1980) 439.

    Article  Google Scholar 

  25. H.J.M. AARTS, C.J. VAN DER POEL, D.E.C. SCHERPENZEEL, H.F.R. ARCISZEWSKI, G.A.P. ENGELBERTINK, Nucl. Instr. Meth., 177 (1980) 417.

    Article  Google Scholar 

  26. R.M. LIEDER, H. JÄGER, A. NESKAKIS, T. VENKOVA, C. MICHEL, Nucl. Instr. Meth. Phys. Res., 220 (1984) 363.

    Article  Google Scholar 

  27. C. MICHEL, H. EMLING, E. GROSSE, F. AZGUI, H. GREIN, H.J. WOLLERSHEIM, J.J. GAARDHØJE, B. HERSKIND, Nucl. Instr. Meth. Phys. Res., A251 (1986) 119.

    Google Scholar 

  28. L. HILDINGSSON, C.W. BEAUSANG, D.B. FOSSAN, W.F. PIEL Jr., A.P. BYRNE, G.D. DRACOULIS, Nucl. Instr. Meth. Phys. Res., A252 (1986) 91.

    Google Scholar 

  29. R. ALBA, G. BELLIA, A. DEL ZOPPO, Nucl. Instr. Meth. Phys. Res., A271 (1988) 553.

    Google Scholar 

  30. M. MOSZYŃSKI, J.H. BJERREGARD, J.J. GAARDHØJE, B. HERSKIND, P. KNUDSEN, G. SLETTEN, Nucl Instr. Meth. Phys. Res., A280 (1989) 73.

    Google Scholar 

  31. S.L. MICEK, B.A.W. VERHOEF, M.J.A. DE VOIGT, J.C. BACELAR, P. BURGER, J. VERPLANCKE, P. VERMEULEN, P. SCHOTANUS, Nucl. Instr. Meth. Phys. Res., B64 (1992) 282.

    Google Scholar 

  32. F. GLOYSTEIN, F.W. RICHTER, U. WATJEN, Nucl. Instr. Meth., 181 (1981) 25.

    Article  Google Scholar 

  33. N.A. WOGMAN, J.C. LAUL, PNL-3700 PT4 (1980).

  34. R.W. PERKINS, J.M. NIELSEN, R.N. DIEBEL, Rev. Sci. Instr., 31 (1960) 1344.

    Article  Google Scholar 

  35. J.A. COOPER, L.A. RANCITELLI, R.W. PERKINS, J. Radioanal. Chem., 6 (1970) 147.

    Google Scholar 

  36. J.A. COOPER, R.W. PERKINS, Nucl. Instr. Meth., 99 (1972) 125.

    Article  Google Scholar 

  37. D.C. CAMP, C. GATROUSIS, L.A. MAYNARD, Nucl. Instr. Meth., 117 (1974) 189.

    Article  Google Scholar 

  38. H. HÖTZL, R. WINKLER, IAEA-SM-252/59 (1981).

  39. N.A. WOGMAN, PNL-4100 PT4 (1982).

  40. C. CHUNG, L. YUAN, K. CHEN, Nucl. Instr. Meth. Phys. Res., A243 (1986) 102.

    Google Scholar 

  41. C. CHUNG, C.J. LEE, Nucl. Instr. Meth. Phys. Res., A273 (1988) 436.

    Google Scholar 

  42. L. YUAN, P. WENG, C. CHAN, Nucl. Techn., 86 (1989) 30.

    Google Scholar 

  43. F. SÀNCHEZ, E. NAVARRO, J.L. FERRERO, A. BAEZA, L.M. DEL RÍO, Nucl. Instr. Meth. Phys. Res., A312 (1992) 207.

    Google Scholar 

  44. R.D. COOPER, G.L. BROWNELL, Nucl. Instr. Meth., 51 (1967) 72.

    Article  Google Scholar 

  45. Y. MURATA, S. HIRAI, M. OKAMOTO, H. KAKIHANA, J. Radioanal. Chem., 36 (1977) 525.

    Google Scholar 

  46. J.H. KLIE, H.D. SHARMA, J. Radioanal. Chem., 71 (1982) 299.

    Google Scholar 

  47. K.W.D. LEDINGHAM, M.G. KELLIHER, S.D. ROBERTSON, J. Radioanal. Chem., 71 (1982) 169.

    Google Scholar 

  48. J.R. VOGT, R. ZEISLER, NBS Technical Note 1178 (1982).

  49. H.T. MILLARD Jr., Nucl. Instr. Meth. Phys. Res., 223 (1984) 416.

    Article  Google Scholar 

  50. H.A. DAS, J. Radioanal. Nucl. Chem., Articles, 99 (1986) 61.

    Google Scholar 

  51. H.A. DAS, J. ZONDERHUIS, J. Radioanal. Nucl. Chem., Articles, 114 (1987) 207.

    Google Scholar 

  52. J.B. CUMMING, P.P. PAREKH, A.V. MURALI, Nucl. Instr. Meth. Phys. Res., A265 (1988) 468.

    Google Scholar 

  53. A.V. MURALI, P.P. PAREKH, J.B. CUMMING, Geochim. et Cosmochim. Acta, 54 (1990) 889.

    Article  Google Scholar 

  54. M. ROSSBACH, R. ZEISLER, J.R.M. WOITTIEZ, Biol. Trace Elem. Res., 26 (1990) 63.

    PubMed  Google Scholar 

  55. M. PETRA, G. SWIFT, S. LANDSBERGER, Nucl. Instr. Meth. Phys. Res., A299 (1990) 85.

    Google Scholar 

  56. M. PETRA, S. LANDSBERGER, G. SWIFT, Fres. J Anal. Chem., 338 (1990) 567.

    Article  Google Scholar 

  57. S. LANDSBERGER, G. SWIFT, J. NEUHOFF, Biol. Trace Elem. Res., 26 (1990) 27.

    PubMed  Google Scholar 

  58. S. LANDSBERGER, J. Radioanal. Nucl. Chem., Articles 161 (1992) 5.

    Google Scholar 

  59. S. LANDSBERGER, S. LARSON, D. WU, Anal. Chem., 65 (1993) 1506.

    Article  PubMed  Google Scholar 

  60. D. WU, S. LANDSBERGER, J. Radioanal. Nucl. Chem., 179 (1994) 155.

    Article  Google Scholar 

  61. S. LANDSBERGER, D. WU, J. Radioanal. Nucl. Chem., (1995).

  62. S. LANDSBERGER, S. PESHEV, J. Radioanal. Nucl. Chem., 181 (1994) 61.

    Article  Google Scholar 

  63. S. LANDSBERGER, S. PESHEV, D.A. BECKER, Nucl. Instr. Meth. in Phys. Res., A353 (1994) 601.

    Google Scholar 

  64. S. LANDSBERGER, D. CHICHESTER, J. Radioanal. Nucl. chem., (accepted, 1995).

  65. S. BIEGALSKI, S. LANDSBERGER, J. Radioanal. Nucl. Chem., 192 (1995) 195.

    Article  Google Scholar 

  66. L.E. WANGEN, Anal. Chem., 52 (1980) 765.

    Article  Google Scholar 

  67. G. MEYER, H. JAFFREZIC, M. TREUIL, Geostandards Newsletter, 9 (1985) 79.

    Google Scholar 

  68. W.D. EHMANN, D.M. MCKNOWN, Anal. Lett., 2 (1969) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsberger, S., Peshev, S. Compton suppression neutron activation analysis: Past, present and future. Journal of Radioanalytical and Nuclear Chemistry, Articles 202, 201–224 (1996). https://doi.org/10.1007/BF02037943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02037943

Keywords

Navigation