Skip to main content
Log in

Radiochemistry of germanium

  • Review
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Since the publication ofRadiochemistry of Germanium (NAS-NS-3043) in 1961, there have been significant developments on the subject. During the period from 1970 to 1980, the diagnostic utilization of the68Ge→68Ga generator system in nuclear medicine stimulated research in the field. In addition, over the past 30 years there have been many advances in the analytical chemistry of germanium (Ge), owing to the rapid increase in application of Ge in the electronics industry and, most recently, as an important component in infrared spectrometers.

This fatest review has been completely rewritten. A literature search has been completed through December of 1990. Literature for selected topics has been surveyed through September 1993. The first section contains general information about germanium and its radioisotopes, and relevant nuclear data in tabulated form. In the second section, a general review of the inorganic and analytical chemistry of Ge is presented. Following these two introductory sections, subsequent sections deal with the production and preparation of germanium radioisotopes, separation and determination of Ge, of particular interest to the radiochemist, and selected procedures for its determination in or separation from various media. The section on separation chemistry has been greatly expanded.

The review includes sections on hot-atom chemistry and the chemical behavior of carrier-free68Ge. A section entitled “Applied Radiochemistry of Germanium” deals specifically with68Ge→68Ga generator systems, the role of71Ge in the detection of solar netrinos, and the preparation of68Ge positron sources for studying dislocations in metallic lattices and calibration of Positron Emission Tomography (PET) cameras.

Two other noteworthy points follow. Throughout the text, the oxidation state of a metal ion having only one stable state, such as germanium, is not explicitly indicated. Therefore, “Ge” typically represents Ge4+. Other ions such as arsenic and tin, however, are indicated with their appropriate oxidation states. The term “carrier-free” applies to radioactive preparations to which no isotopic carrier (stable isotopes) is intentionally added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glocking, F.The Chemistry of Germanium, Academic Press, Inc., London, (1969).

    Google Scholar 

  2. Germanium, (Supplement),Gmelin Handbook of Inorganic and Organomettallic Chemistry, Gmelin, Frankfurt (reprint 1958). (in German, Literature closing date 1954).

  3. Germanium,Gmelin Handbook of Inorganic and Organomettallic Chemistry, Gmelin, Frankfurt (reprint 1961). (in German, Literature closing date 1931).

Analytical

  1. Henze, G., “Germanium −100 Years. Development of Analysis”,Fresenius' Z. Anal. Chem. 324, 105 (1986).

    Article  Google Scholar 

  2. Nazarenko, V. A.,Analytical Chemistry of Germanium [translated by N. Mandel], John Wiley & Sons, Inc., New York (1974).

    Google Scholar 

  3. Musgrave, J. R., “Germanium” inTreatise on Analytical Chemistry, Part II, Vol. 2, [I. M. Kolthoff, P. J. Elving, and E. B. Sandell, Eds.], John Wiley & Sons, Inc., New York (1962), pp. 208–245.

    Google Scholar 

Inorganic

  1. Rochow, E. G.,Germanium, inComprehensive Inorganic Chemistry Vol. 2, [J. C. Bailer Jr., H. J. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, Eds.], Pergamon Press Ltd, Oxford (1973), pp. 1–41.

    Google Scholar 

  2. Samsonov, G. V., and Bondarev, V. N.,Germanides, [translated by A. Ward], Primary Sources, New York, (1970).

    Google Scholar 

  3. Stone, F. G. A..Hydrogen Compounds of the Group IV Elements, Prentice-Hall, Inc., Englewood Cliffs, N.J., (1962), pp. 63–76.

    Google Scholar 

  4. Johnson, O. H., “Germanium and Its Inorganic Compounds”,Chem. Rev. 51, 431 (1952).

    Article  Google Scholar 

Organometallic

  1. Tetraorganogermanium Compounds from Ge(C 2 H 7 ) 3 R to GeR 4 ,Gmelin Handbook of Inorganic and Organomettallic Chemistry, Gmelin, Frankfurt (1990). (Literature closing date 1987).

  2. Ge(CH 3 ) 3 R, and Ge(C 2 H 5 ) 3 R Compounds,Gmelin Handbook of Inorganic and Organomettallic Chemistry, Gmelin, Frankfurt (1989). (Literature closing date 1985).

  3. Tetraorganogermanium,Gmelin Handbook of Inorganic and Organomettallic Chemistry, Gmelin, Frankfurt (1988). (Literature closing date 1985).

  4. Lesbre, M., Mazerlles, P., and Satgé, J.,The Organic Compounds of Germanium, John Wiley & Sons, Ltd., London (1971).

    Google Scholar 

  5. Dub, M.,Organometallic Compounds 2nd ed., Vol. 2, Springer Verlag, Berlin, 1967).

    Google Scholar 

  6. Hooton, K. A.,Organogermanium Compounds,Preparative Inorganic Reaction,” [M. L. Jolly, ed.], Vol. 4, John Wiley & Sons, Inc., New York (1968), pp. 85–176.

    Google Scholar 

  7. Hagihara, N., ed.,Handbook of Organometallic Compounds, W. A. Benjamin Inc., New York (1968), pp. 449–467.

    Google Scholar 

  8. Quane, D., and Bottei, R. S., “Organogermanium, Chemistry,”Chem. Rev. 63 403 (1963).

    Article  Google Scholar 

Radiochemistry

  1. Marinsky, J. A.,The Radiochemistry of Germanium, National Academy of Sciences, NAS-NS-3043 (1961).

  2. Mirzadeh, S.,Some Observations on the Chemical Behavior of Carrier-Free 68 Ge, PhD Thesis, The University of New Mexico (1978).

Electrochemistry

  1. Efimov, E. A., and Erusalimchik, I. G.,Electrochemistry of Germanium and Silicon, [translated by A. Peiperl], The Sigma Press Publishers, Washington, D.C. (1963).

    Google Scholar 

  2. De Zoubov, N., Deltombe, E., Vanleugenhaghe, C., and Polurbaix, M., “Germanium,” in:Atlas of Electrochemical Equilibria in Aqueous Solutions [M. J. N. Pourbaix, Ed.], National Association of Corrosion Engineers, Huston (1977).

    Google Scholar 

Geochemistry

  1. Weber, J. N.,Geochemistry of Germanium, Dowden, Hutchinson, and Ross, Stroudsburg, PA (1973).

    Google Scholar 

List of References

  1. Green, M. D., Rosman, K. J. R., and De Laeter, J. R., “The Isotopic Composition of Germanium in Terrestrial Samples,”Int. J. Mass Spectrom. Ion Processes 68, 15 (1986).

    Article  Google Scholar 

  2. Lederer, C. M., and Shirley, V. S., editorsTable of Isotopes, 7th ed., John Wiley and Sons Inc., New York, 1978.

    Google Scholar 

  3. Reus, U., and Westmeier, W., “Catalog of Gamma-Rays from Radioactive Decay”,At. Data Nucl. Data Tables. Parts I and II 29 (1983).

  4. Wapstra, A. H., and Bos, A., “The 1977 Mass Evaluation, Part I. Atomic Mass Table,”At. Data Nucl. Data Tables 19, 175 (1977).

    Article  Google Scholar 

  5. Halbert, M. L., “Mass Chain: 64,”Nucl. Data Sheets,28, 259 (1979).

    Google Scholar 

  6. Singh, B., “Mass Chain: 64 Update,”Nucl. Data Sheets 62, 688 (1991).

    Article  Google Scholar 

  7. Auble, R. L., “Mass Chain: 65,”Nucl. Data Sheets 16, 376 (1975).

    Google Scholar 

  8. Auble, R. L., “Mass Chain: 66,”Nucl. Data Sheets 16, 409 (1975).

    Google Scholar 

  9. Bhat, M. R., “Mass Chain: 66, Update”,Nucl. Data Sheets 61, 510 (1990).

    Google Scholar 

  10. Auble, R. L., “Mass Chain: 67,”Nucl. Data Sheets,16, 440 (1975).

    Google Scholar 

  11. Kearns, F., “Mass Chain: 68,”Nucl. Data Sheets 33, 540 (1981).

    Google Scholar 

  12. Kearns, F., and Ward, N. J., “Mass Chain: 69,”Nucl. Data Sheets 35 151 (1982).

    Article  Google Scholar 

  13. Bhat, M. R., “Mass Chain 69, Update,”Nucl. Data Sheets 58, 59 (1989).

    Article  Google Scholar 

  14. Bhat, M. R., “Mass Chain: 70,”Nucl. Data Sheets,51, 131 (1987).

    Article  Google Scholar 

  15. Bhat, M. R., and Alburger, D. E., “Mass Chain 71,”Nucl. Data Sheets 53, 36 (1988).

    Google Scholar 

  16. Kearns, F. and Mo, J. N., “Mass Chain 72”Nucl. Data Sheets 31, 142 (1980).

    Article  Google Scholar 

  17. Ekstrom, L. P., and Kearns, F., “Mass Chain 73”,Nucl. Data Sheets 29, 31 (1980).

    Google Scholar 

  18. Singh, B., and Viggars, D. A., “Mass Chain 74,”Nucl. Data Sheets 51, 252 (1987).

    Article  Google Scholar 

  19. Ekstrom, L. P., “Mass Chain 75”,Nucl. Data Sheets 32, 241 (1981).

    Google Scholar 

  20. Singh, B., and Viggars, D. A. “Mass Chain 76,”Nucl. Data Sheets 42, 279 (1984).

    Google Scholar 

  21. Singh, B., and Viggars, D. A., “Mass Chain 77,”Nucl. Data Sheets 77, 110 (1980).

    Google Scholar 

  22. Rab, S., “Mass Chain 78 Update,”Nucl. Data Sheets 63, 21 (1991).

    Article  Google Scholar 

  23. Hoff, P., and Fogelberg B., “Properties of Strongly Neutron-Rich Isotopes of Ge and As,”Nucl. Phys. A368, 210 (1981).

    Article  Google Scholar 

  24. Singh, B., “Mass Chain 80”Nucl. Data Sheets 66, 647 (1992).

    Google Scholar 

  25. Lemming, J. F., “Mass Chain 81,”Nucl. Data Sheets 15, 147 (1975).

    Google Scholar 

  26. Kocher, D. C., “Mass Chain 83”,Nucl. Data Sheets 15, 181 (1975).

    Article  Google Scholar 

  27. Muller, H. W., and Tepel, J. W., “Mass Chain 84,”Nucl. Data Sheets,27, 355 (1979).

    Article  Google Scholar 

  28. Robertson, R. G. H., and Austin, S. M., “Germanium-64,”Phys. Rev. Lett. 29, 130 (1972).

    Article  Google Scholar 

  29. Goosman, D. R., “Mass of64Ge and Its Role in Nucleosynthesis,”Phys. Rev. C7, 122 (1973).

    Article  Google Scholar 

  30. Robertson, R. G. H., and Austin, S. M., “Neutron-Deficient Isotopes64Ge and65Ge,”Phys. Rev. C9, 1801 (1974).

    Article  Google Scholar 

  31. Hardy, J. C., MacDonald, J. A., Schmeing, H., et al., “A New Series of Beta-Delayed Proton Precursors,”Phys. Lett.,63B, 27 (1976).

    Article  Google Scholar 

  32. Bakhru, H., Ladenbauer-Bellis, I. M., “Level Structure of66Ga,”Phys. Rev. 184, 1142 (1969).

    Article  Google Scholar 

  33. Mirzadeh, S., and Chu, Y. Y., “Production of66Ga, A Positron-Emitting Nuclide for Radioimmunotherapy,”Proceedings of the International Conference on Nuclear Data for Science and Technology, Qaim, S. M., ed., Julich, Germany, May 1991, Springer Verlag, New York, 1992, pp. 619–620.

    Google Scholar 

  34. Barkan, S. et al., “Studies of the Decay of the Compound Nucleous68Ge,” inThe Use of Cyclotrons in Chemistry, Metallurgy and Biology, C. B. Amphlett, ed., Butterworths, London (1970), pp. 20–30.

    Google Scholar 

  35. DeBore, F. W. N., Lingeman, E. W., van Lieshout, R., and Ricci, R. A., “Re-Examination of the66Ge Decay,”Nucl. Phys. A158, 166 (1970).

    Article  Google Scholar 

  36. Bakhru, H., Ladenbauer-Bellis, I. M., “Studies on the Decay of67Ge”Phys. Rev. 177, 1686 (1969).

    Article  Google Scholar 

  37. Zoller, W. H., Gordon, G. E., and Walters, W. B., “Decay of 19 Min67Ge to Levels of67Ga,“Nucl. Phys. A137, 606 (1969).

    Article  Google Scholar 

  38. Horren, D., “Decay of the Radioisotopes68Ge and68Ga,”Phys. Rev. 113, 572 (1959).

    Article  Google Scholar 

  39. Nagame, Y., Unno, M., Nakahara, H., and Murakami, Y., “Production of67Ga by Alpha Bombardment of Natural Zinc,”Int. J. Appl. Radiat. Isot. 29, 615 (1978).

    Article  Google Scholar 

  40. Loc'H, C., Maziere, B., Comar, D., Knipper, R., “A New Preparation of Germanium-68,”Int. J. Appl. Radiat. Isot. 33, 267 (1982).

    Article  Google Scholar 

  41. Mausner, L. F., Kurczak, S., and Srivastava, S. C., “Production of Ge-68 at BLIP”, Symposium on Radioisotope Production and Radiochemical Separations, abstract, Division of Nuclear Chemistry and Technology, 205th ACS National Meeting, Denver, March 1993.

  42. Horiguchi, T., Kunahora, H., Inoue, H. et al., “Excitation Functions of Ge(p,xnyp) Reactions and Production of68Ge,”Int. J. Appl. Radiat. Isot. 34, 1531 (1983).

    Article  Google Scholar 

  43. Grant, M. P., Miller, D. A., Gilmore, J. S. et al., “Medium-Energy Spallation Cross Sections. 1. RbBr Irradiation with 800-MeV Protons”,Int. J. Appl. Radiat. Isot.,33, 415 (1982).

    Article  Google Scholar 

  44. Grutter, A., “Cross Sections for Reactions with 593 and 540 MeV Protons in Al, As, Br, Rb, and Y”Int. J. Appl. Radiat. Isot. 33, 725 (1982).

    Article  Google Scholar 

  45. Temperley, J. K., McDaniels, D. K., and Wells, D. O., “Level Scheme of69Ga,”Phys. Rev. 139B, 1125 (65).

    Google Scholar 

  46. Mughabghab, S. F., Divadeenam, M., and Holden, N. E.,Neutron Cross Sections, Vol. 1, Part, A; Z=1–60. Academic Press, New York (1981).

    Google Scholar 

  47. McCown, D. A., Woodward, L. L., and Pool, M. L., “Radioactive Isotopes of Ga and Ge”,Phys. Rev. 74 1311 (1948).

    Article  Google Scholar 

  48. Calamand A., “Cross Sections for Fission Neutron Spectrum Induced Reactions,” inHandbook on Nuclear Activation Cross Sections IAEA, Technical Report 156 (1974).

  49. Paul, E. B., and Clark, R. L., “Cross-Section Measurements of Reactions Induced by Neutrons of 14.5 MeV Energy,”Can. J. Phys. 31 267 (1953).

    Google Scholar 

  50. Campbell, E. C., and Nelson, F., “Metastable State of73Ge,”Phys. Rev. 107, 502 (1957).

    Article  Google Scholar 

  51. Smith, A. B., Caird, R. S., and Mitchell, C. G., “Some Experiments on75Ge and75mGe,”Phys. Rev.,88 150 (1952).

    Article  Google Scholar 

  52. Fritze, K., “The Decay of78Ge,”Nucl. Phys. A64, 303 (1965).

    Article  Google Scholar 

  53. Aleklet, K., and Nyman, G., “Beta-Decay Properties of Strongly Neutron-Rich Nuclei,”Nucl. Phys. A246, 425 (1975).

    Article  Google Scholar 

  54. Grapengiesser, B., Lund, E., and Rudstam, G., “Survey of Short-Lived Products Obtained Using the Isotope Separator On-Line Facility at Studsvik,”J. Inorg. Nucl. Chem. 36, 2409 (1974).

    Article  Google Scholar 

  55. Van Klinken, J. et al., “The Decay of82a&82bAs and79Ge,”Nucl. Phys. A157, 385 (1970).

    Article  Google Scholar 

  56. Del Marmol, P., and Fettweis, P., “Identification of New Ge Isotopes in Fission: Decay Properties and Nuclear Charge Distribution in the A=78 to 84 Mass Region,”Nucl. Phys. A194, 140 (1972).

    Article  Google Scholar 

  57. Fritze, K., and Griffiths, K., “Short-Lived Fission Products,”Radiochim. Acta 7, 59 (1967).

    Google Scholar 

  58. Kratz, J. V. et al., “Gamma-Ray Emission from80–86As Isotopes,”Nucl. Phys. A250, 13 (1975).

    Article  Google Scholar 

  59. Waters, S. L., Forse, G. R., Horlock, P. L., and Woods, M. L., “The Half-Life of Germanium-69,”Int. J. Appl. Radiat. Isot. 32, 757 (1981).

    Article  Google Scholar 

  60. U.S. Bureau of Mines and MineralCommodity Summaries (1986), pg. 60.

  61. Venugopal, B., and Luckey, T. D.,Metal Toxicity in Mammals, Plenum Press, New York (1978), pg. 177.

    Google Scholar 

  62. Friberg, L., Nordberg, G. R., and Vouk, V. B.,Handbook on the Toxicity of Metals, Elsevier North Holland, New York (1979), pg. 423.

    Google Scholar 

  63. Clayton, G. D., and F. E. Clayton eds.,Patty's Industrial Hygiene and Toxicology, Vol. 1, 3rd ed., John Wiley, New York (1982), pg. 1641.

    Google Scholar 

  64. Derenzo, S. E., Budinger, T. F., and Vuletich, T., “High Resolution Positron Emission Tomography Using Small Bismuth Germanate Crystals and Individual Photosensors,”IEEE Trans. Nucl. Sci. 30, 665 (1983).

    Google Scholar 

  65. Ish, M., Akigamas S., and Seikichi, T. K., “Bismuth Germanate (BGO) Single Crystals for Scintillation Detectors,”Hitachi Hyoron 62, 797 (1980).

    Google Scholar 

  66. Tilbury, R. S., et al., “Reusable Gels for Ge-68 Sources.”Appl. Radiat. Isot.,42, 1111 (1991).

    Google Scholar 

  67. Ranger, N. T., Thompson, C. T., and Evans, A. C., “The Application of Masked Orbiting Transmission Source for Attenuation Correction in PET,”J. Nucl. Med. 30, 1056 (1989).

    PubMed  Google Scholar 

  68. Thompson, C. T., Ranger, N. T., and Evans, A. C., “Simultaneous Transmission and Emission Scans in Positron Emission Tomography,”IEEE Trans. Nucl. Sci. 36, 1011 (1989).

    Article  Google Scholar 

  69. Yamamoto, S., et al., “Analysis of Optimum Diameter of Orbit of Transmission Line Source in Positron Emission Tomography”,IEEE Trans. Nucl. Sci. 36, 1017 (1989).

    Article  Google Scholar 

  70. Huesman, R. H. et al., “Orbiting Transmission Source, for Positron Tomography,”IEEE Trans. Nucl. Sci. 35, 735 (1988).

    Article  Google Scholar 

  71. Bajgar, C., and Dieterly, D. K., “A New Radionuclide Source for High Temperature Positron Annihilation Studies,”Radiochem. Radioanal. Lett. 19, 201 (1974).

    Google Scholar 

  72. Campbell, J. L., Schulte, C. W., and Dieterly, D. K., “Radionuclide Positron Emitters for High Temperature Measurements on Metals Using Positron Annihilation,Appl. Phys. 6, 327 (1975).

    Article  Google Scholar 

  73. Campbell, J. L. et al., “Radionuclide Emitters for Positron-Annihilation Studies of Condensed Matter”,Nucl. Instrum. Methods,116, 369 (1974).

    Article  Google Scholar 

  74. Green, M. A., and Welch, M. J., “Gallium Radiopharmaceutical Chemistry”Nucl. Med. Biol.,16 435 (1989).

    Google Scholar 

  75. Green, M. A., Welch, M. J., and Mathias, C. J., “68Ga 1,1,1-tris(5-methoxysalicylaldimino-methyl)ethane: A Potential Tracer for Evaluation of Myocardial Blood Flow,”J. Nucl. Med. 26, 170 (1985).

    PubMed  Google Scholar 

  76. Mintun, M. A., Dennis, D. R., and Welch, M. J., “Measurements of Pulmonary Vascular Permeability with Positron Emission Tomography and68Ga Transferring,”,J. Nucl. Med.,28, 1704 (1987).

    PubMed  Google Scholar 

  77. Lide, D. R., ed.,Handbook of Chemistry and Physics, 73rd ed., CRC Press, New York (1992).

    Google Scholar 

  78. Huhey, J. E.,Inorganic Chemistry, Harper & Row, New York (1978).

    Google Scholar 

  79. Wagman, D. D. et al.,J. Phys. Chem. Ref. Data II, 1982 (Suppl. No. 2).

  80. De Zoubov, N. et al., “Germanium” inAtlas of Electrochemical Equilibria in Aqueous Solutions, M. J. N. Pourbaix, ed., National Association of Corrosion Engineers, Huston (1977), pp. 464–474.

    Google Scholar 

  81. Darwent, National Bureau of StandardsPublication NSRD-NBS 31 (1970).

  82. Brewer, L., and Brackett, E., “The Dissociation Energies of Gaseous Alkali Halides,”Chem. Rev. 61, 425 (1961).

    Article  Google Scholar 

  83. Stone, F. G. A.,Hydrogen Compounds of the Group IV Elements, Prentice-Hall, Princeton, New Jersey (1962).

    Google Scholar 

  84. MacKay, K. M. et al., “Germanyl and Digermanyl Halides”,J. Inorg. Nucl. Chem. 28, 1377 (1966).

    Article  Google Scholar 

  85. Durrant, P. J., and Durrant, B.,Introduction to Advanced Inorganic Chemistry, John Wiley & Sons, New York (1970), pg. 656.

    Google Scholar 

  86. Dub, M.,Organometallic Compounds, 2nd ed., Vol. 2, Springer Verlag, Berlin (1967).

    Google Scholar 

  87. Hooton, K. A. “Organogermanium Compounds,” in W. L. Jolly, ed.,Preparative Inorganic Reactions, Vol. 4, John Wiley & Sons, New York (1968), pp. 85–176.

    Google Scholar 

  88. Hagihara, N., ed.,Handbook of Organometallic Compounds, W. A. Benjamin Inc., New York (1968) pp. 449–467.

    Google Scholar 

  89. Lesbre, M., Mazerolles, P., and Stage, J.,The Organic Chemistry of Germanium, John Wiley & Sons, Ltd., London (1971).

    Google Scholar 

  90. Yoder, C. M. S., and Zukerman, J. J., “Donor-Acceptor Complexes of Bis(o-phenylenedioxy)-silane and-germane,”Inorg. Chem. 6, 163 (1967).

    Article  Google Scholar 

  91. Tsau, J., et al., “Stability of Complexes and Basicity of Ligands. II. Ge(IV) Chelates with 8-hydroxyquinoline and Substituted Derivatives,”Bull. Soc. Chim. Fr. 3, 1039 (1967).

    Google Scholar 

  92. Joyner, R. D., and Kenney, M. E., “Germanium Phthalocyanines,”J. Am. Chem. Soc. 82 5790 (1960).

    Article  Google Scholar 

  93. Merz, E., and Riedel, H. J., “Comparative Studies of Chemical Effects Following Nuclear Reactions and Transformations on Metal Organic Phenyl Compounds,”Proceedings of the Symposium on Chemical Effects Associated with Nuclear Reactions and Radioactive Transformations, Dec. 1964, Vienna, Vol. 2, pg. 179.

    Google Scholar 

  94. Kleinberg, J., Argersinger, W. J., and Griswold, E.,Inorganic Chemistry, Heath, Boston (1960), pg. 370.

  95. Nazarenko, V. A.,Analytical Chemistry of Germanium, translated by Mandel, N., John Wiley & Sons, Inc., New York (1974).

    Google Scholar 

  96. Langer, H. G., “Solid Complexes of Tetravalent Metal Ions with EDTA,”J. Inorg. Nucl. Chem. 26, 59 (1964).

    Article  Google Scholar 

  97. Efimov, E. A., and Erusalimchik, I. G.,Electrochemistry of Germanium and Silicon, translated by Peiperl, A., The Sigma Press Publishers, Washington, D. C. (1963).

    Google Scholar 

  98. Luke, C. L., “Photometric Determination of Sn with Phenylfluorone,”Anal. Chem. 28, 1276 (1956).

    Article  Google Scholar 

  99. Takemura, H., “Determination of Germanium in Organic Compounds by Atomic Absorption Spectrophotometry,”Chukyo Joshi Daigaku Kiyo 18, 97 (1984), in Japanese [Chem. Abs. 102(20):178470].

    Google Scholar 

  100. Amos, M. D., and Willis, J. B., “Use of High-Temperature Premixed Flames in Atomic Absorption Spectroscopy,”Spectrochim Acta 22, 1325 (1966).

    Article  Google Scholar 

  101. Braman R. S., and Tompkins, M. A., “Atomic Emission Spectrometric Determination of Antimony, Germanium and Methylgermanium Compounds in the Environmenta,”Anal. Chem. 50, 1088 (1978).

    Article  Google Scholar 

  102. Mulligan, K. J., et al., “Comparison of Several Microwave Cavities for Simultaneous Determination of As, Ge, Sb and Sn,”Anal. Chem. 51, 1935 (1979).

    Article  Google Scholar 

  103. Hamilton, E. I., Minski, M. J., and Clearly, J. J., “Problems Concerning Multi-Element Assay in Biological Materials,”Sci. Total Environ. 1, 14 (1972).

    Google Scholar 

  104. Shabanova, L. N., Shelpakova, I. R., and Yudelevich, I. G., “Mass-Spectrometric Analysis of High-Purity Tin,”,J. Anal. Chem. USSR 33, 885 (1978).

    Google Scholar 

  105. Gharib, A., and Morris, D. F. C., “Determination of Germanium and Tin in Geological Materials by Radiochemical Neutron Activation Analysis,”Radiochim. Acta 27, 35 (1980).

    Google Scholar 

  106. Zikovsky, L., Galinier, J. L., and St.-Pierre, “Systematic Calculation of Detection Limits in INAA of Single Element Matrixes with a SLOWPOKE Reactor,”J. Radioanal. Chem. 77, 259 (1983).

    Google Scholar 

  107. Kiseleva, T. T., and Firsov, V. I., “Gamma and Neutron-Activation Analysis of Niobium Germanide and Stannide Films,”J. Anal. Chem. USSR,37, 809 (1982).

    Google Scholar 

  108. Niese, S., “Neutron Activation Analysis of Materials,”Kernenergie 25, 476 (1982), in German.

    Google Scholar 

  109. Alfassi, Z. B., “Epithermal Neutron Activation Analysis,”J. Radioanal. Nucl. Chem. 90, 151 (1985).

    Article  Google Scholar 

  110. Gladney, E. S. et al., “Evaluation of a Boron-Filtered Epithermal Neutron Irradiation Facility,”Anal. Chem. 52, 2128 (1980).

    Article  Google Scholar 

  111. Kondon, Y., “Cyclic Activation with 14-MeV Neutrons, I,”Kinki Daigaku Genshiryoku Kenkyusho Nenpo 21, 37 (1984), in Japanese [Chem. Abs. 102:1781771a].

    Google Scholar 

  112. Kondo, Y., “Cyclic Activation with 14-MeV Neutrons, II,”Kinki Daigaku Genshiryoku Kenkyusho Nenpo 22, 9 (1985), in Japanese [Chem. Abs. 104:141358a].

    Google Scholar 

  113. Spyrou, N. M., et al., “Usefulness of Thermal and Epithermal Cyclic Activation Analysis with a Reactor System,”J. Radioanal. Chem. 72, 155 (1982).

    Google Scholar 

  114. Miller, D. A., “Instrumental Neutron Activation Analysis Utilizing Pulsed Irradiations,”Nucl. Instrum. Methods 159, 109 (1979).

    Article  Google Scholar 

  115. Bonardi, M. et al., “Development of Proton Activation Analysis for the Determination of Heavy Metals in Biological Matrixes: Excitation Functions, Irradiation System and Selective Radiochemical Separations,”J. Radioanal. Chem. 70, 337 (1982).

    Google Scholar 

  116. Borderie, B. et al., “The 3.5 MeV Triton Activation for Elements with Z<34,”J. Radioanal. Chem. 37, 297 (1977).

    Google Scholar 

  117. Williams, D. R., and Hislop, J. S., “High Resolution γ-Spectra of 40–44 MeV Photon Activation Products,”U. K. At. Energy Res. Establ., Rep., AERE-R 9022, (1980), pg. 32.

  118. O'Brien, H. A., “Utilization of an Intense Beam of 800 MeV Protons to Prepare Radionuclides,”Nucl. Instrum. Methods Phys. Res. B40/41, 1126 (1989).

    Google Scholar 

  119. Miller, D. A. et al., “Research-Scale Experimentation on the Production and Purification of Spallogenic68Ge for Nucl. Med. Applications,”Applications of Nuclear and Radiochemistry, Lambrecht, R. M., and Morcos, N., editors, Pergamon Press, New York (1982), pp. 37–44.

    Google Scholar 

  120. Miller D. A. et al., “Nuclear Spallation as a Mechanism for Radioisotope Production,”J. Radioanalyt. Nucl. Chem. 123, 643 (1988).

    Article  Google Scholar 

  121. Hamilton, V. T., Phillips, D. R., and Jamriska, D. J., “Recovery of68Ge and95mTc from Proton Irradiated Mo,” Symposium on Radioisotope Production and Radiochemical Separations, Div. Nucl. Chem. Tech., 205th ACS National Meeting, Denver, March 1993, abstract.

  122. Kramer, S., Neidhart, B., and Bachmann, K., “Cross Section Measurements of High Energy Proton Induced Reactions in Au, Ta and Ag Targets,”Inorg. Nucl. Chem. Lett. 13, 205 (1977).

    Article  Google Scholar 

  123. Nagame, Y., Nakahara, H., and Furukawa, M., “Excitation Function for α and3He Particles Induced Reactions on Zinc,”Radiochim. Acta 46, 5 (1989).

    Google Scholar 

  124. Nagame, Y. et al., “Production of67Ga by Alpha Bombardment of Natural Zinc,”Int. J. Appl. Radiat. Isot. 29, 615 (1978).

    Article  Google Scholar 

  125. Porile, N. T. et al, “Nuclear Reactions of69Ga and71Ga with 13–56 MeV Protons,”Nucl. Phys. 43, 500 (1963).

    Article  Google Scholar 

  126. Karpeles, V. A., “Herstellug eines68Ga-generator,”Radiochim. Acta 12, 22 (1969).

    Google Scholar 

  127. Maki, Y., and Murakami, Y., “The Separation of Arsenic-77 in a Carrier-Free State from the Parent Nuclide Germanium-77 by a Thin-Layer Chromatographic Methods,”J. Radioanal. Chem. 22, 5 (1974).

    Google Scholar 

  128. Mirzadeh, S.,Some Observations on the Chemical Behavior of Carrier-free 68 Ge, Ph.D. Thesis, University of New Mexico, 1978.

  129. Mirzadeh, S. et al., “A Procedure for the Preparation of Chloride-Free Solutions of Carrier-Free68Ge,”Radiochem. Radioanal. Lett. 42, 361 (1980).

    Google Scholar 

  130. Mirzadeh, S., and Kahn, M., “Studies of the Chemical Behavior of Carrier-Free68Ge. III. Adsorptive Properties,”,Radiochim. Acta 39, 189 (1986).

    Google Scholar 

  131. Mirzadeh, S. et al., “Studies of the Chemical Behavior of Carrier-Free68Ge. I. Purification by Distillation from Acidic Chloride Solutions,”Radiochim. Acta 28, 47 (1981).

    Google Scholar 

  132. Baro, G. B., and Aten, A. H. W., “Chemical State of As Formed by Nuclear Transformation in the Oxides of Ge and Se,”Proceedings of the Symposium on Chemical Effects Associated with Nuclear Reactions and Radioactive Transformations, IAEA, 1961, Prague, Vol.2, p 233.

    Google Scholar 

  133. Halpern, A., and Sawlewicz, K., “Valence Distribution of77As From β-decay,”Nukleonika 13, 921 (1968).

    Google Scholar 

  134. Genet, M., “Effects Chimiques Associés à l'Emission ß. IV. Défauts Créés dans Irradiation et Répercussions sur l'état Chimique du Radioarsenic formé par Emission ß,”Radiochim. Acta 12, 193 (1969).

    Google Scholar 

  135. Genet, P. M., and Ferradini, C., “Effects Chimiques Associés à l'Emission ß. I. Etude de l'Arsenic 77 Formé par Désintégration ß de77mGe et77Ge dans GeO2 Irradié au Réactor Nucléaire,”Radiochim. Acta 11, 19 (1969).

    Google Scholar 

  136. Genet, P. M., and Ferradini, C., “Effects Chimiques Associés à l'Emission ß. II. Etude de l'Arsenic 77 Formé par Désintegration ß de77mGe dans76, 77GeO2 de Synthèse,”Radiochim. Acta 11, 25 (1969).

    Google Scholar 

  137. Halpern, A., Siekierska, K. E., and Siuda, A., “The Chemical Forms of Radioarsenic Activated in ß-Decay of77GeCl4 and in the75AsCl3 (n, γ) Reaction in Benzene,”Radiochim. Acta 3, 40 (1964).

    Google Scholar 

  138. Nowak, M., “Preliminary Studies on Neutron Activation of Tetraethyl-Germanium,”Int. J. Appl. Radiat. Isot. 16, 649 (1965).

    Article  Google Scholar 

  139. Nowak, M., and Akerman, K., “Behavior of Tetraethyl Germanium During Activation in a Nuclear Reactor,”Radiochem. Radioanal. Lett. 3, 39 (1970).

    Google Scholar 

  140. Nowak, M., and Akerman, K., “Tetraethylgermane Behavior During Activation in a Nuclear Reactor,”Radiochim. Acta 13, 48 (1970).

    Google Scholar 

  141. Murin, A. N. et al., “Enrichment of Radioisotopes of I, Ge, As and Sb by [γ, n] Reactions,”Sov. Phys. Dokl. 1, 719 (1956).

    Google Scholar 

  142. Riedel, H. J., “Chemical Secondary Reactions After the β-decay of Ge-Tetraphenyl,”Radiochim. Acta 4, 48 (1965).

    Google Scholar 

  143. Merz, E., “Isotopie-effekte nach Neutronen-induzierten Kernreaktionen in Germanium-verbindungen,”Radiochim. Acta 2, 172 (1964).

    Google Scholar 

  144. Merz, E., and Riedel, H. J., “Vergleichende Untersuchungen Chemischer Effekte nach dem K-Einfang-, (n,p)- und (n,γ)-Prozeß,”Radiochim. Acta 3, 35 (1964).

    Google Scholar 

  145. Merz, E., “Comparative Recoil Experiments with Metal Phenyl Compounds,”Nukleonika 8, 248 (1966).

    Google Scholar 

  146. Gaspar, P. P., and Frost, J. J., “Reactions of Recoiling Germanium Atoms in Germane, Digermane, and Germane-Silane Mixtures. II,”J. Amer. Chem. Soc. 95, 6567 (1973).

    Article  Google Scholar 

  147. Gaspar, P. P. et al., “Germanium Atoms. Reaction with Germane and Silane,”J. Am. Chem. Soc. 91, 1574 (1969).

    Article  Google Scholar 

  148. Wiles, D. R., and Baumgartner, F., “Radiochemical Transformation in Organometallic Compounds,”Chemical Effects of Nuclear Transformations in Inorganic Systems, Harbottle and Maddock, editors, North-Holland Publishing Co., Amsterdam, 1979, pg. 261.

    Google Scholar 

  149. Halpern, A., “Chemical Effects of β-decay in Inorganic Solid Systems,”Chemical Effects of Nuclear Transformations in Inorganic Systems, Harbottle and Maddock, editors, North-Holland Publishing Co., Amsterdam, 1979, pg. 301.

    Google Scholar 

  150. Castiglioni, M., and Volpe, P., “Recoil Tritium Reactions on Monogermane,”Polyhedron 2, 225 (1983).

    Article  Google Scholar 

  151. Makariunas K., Dragunas, A., and Makariuniene, E., “Investigation of the Decay Rate for Germanium-71 in Chemical Compounds and Calibration of the Mossbauer Isomer Shift of the 67 keV γ-transition of Germanium-73,”Hyperfine Interact. 36, 211 (1987).

    Google Scholar 

  152. Makariunas, K., Makariuniene, E., and Dragunas, A., “Effect of Chemical Structure on the Radioactive Decay Rate of Germanium-71,”Hyperfine Interact. 7, 201 (1979).

    Article  Google Scholar 

  153. Makariunas, K., Makariuniene, E., and Dragunas, A., “Germanium-71 and Arsenic-73 — Probes for the Determination of the Chemical Changes of the Electron Density on Germanium and Arsenic Nuclei by the Δλ/λ Method,”Liet. Fiz. Rinkinys 26, 414 (1986), in Russian [Chem. Abs. A105(18):159933q].

    Google Scholar 

  154. Johlige, H. W., Aumann, D. C., and Born, H. J., “Determination of the Relative Electron Density at the Be Nucleus in Different Chemical Combinations, Measured Changes in the Electron-Capture Half-Life of7Be,”Phys. Rev. C2 1616 (1970).

    Article  Google Scholar 

  155. Finholt, A. E. et al., “Preparation and Some Properties of Hydrides of Elements of the Fourth Group of the Periodic System and of Their Organic Derivative,”J. Am. Chem. Soc.,69 2692 (1947).

    Article  Google Scholar 

  156. Griffiths, J. E., “Monogermanes-Their Synthesis and Properties,”Inorg. Chem.,2 375 (1963).

    Article  Google Scholar 

  157. Henden, E., “Simultaneous Determination of Ge, As, Sn and Sb by Molecular Emission Cavity Analysis after Hydride Generation and Gas Chromatographic Separation,”Anal. Chim. Acta,173 89 (1985).

    Article  Google Scholar 

  158. Hahn, M. H. et al., “The Sequential Determination of As, Se, Ge and Sn as Their Hydrides by Gas-Solid Chromatography with an Atomic Absorption Detector,”Anal. Chim. Acta,118 115 (1980).

    Article  Google Scholar 

  159. Fricke, F. L., Robbins, W. D., and Caruso, J. A., “Determination of Ge, As, Sn, Se, and Sb by Plasma Emission Spectrometry with Hydride Generation and Chromatographic Separation,”J. Assoc. Off. Anal. Chem. 61, 1118 (1978).

    Google Scholar 

  160. Rudstam, G., and Grapengiesser, B., “Thermochromatography for Rapid Chemical Separations. II. Determination of Deposition Temperatures,”Radiochim. Acta 20, 97 (1973).

    Google Scholar 

  161. Fiser, M., “Separation of Some Hydrides from Fission Products by Gas Chromatography”,Ustav. Jad. Fyz., Cesk. Akad. Ved. 2917-Ch, 15 (1972), in Czech [Chem. Abs., 82:130746b].

    Google Scholar 

  162. Mirzadeh, S., and Kahn, M., “Studies of the Chemical Behavior of Carrier-Free68Ge. II. A Determination of the Distribution Constant from the Distillation of Azeotropic HCl,”Radiochim. Acta 39, 73 (1986).

    Google Scholar 

  163. Shevyalina, V. K., Shpirt, M. Ya., and Blavatnik, V. M., “Precipitation of Germanium Disulphide from Sulfuric Acid Solutions,”Russ. J. Inorg. Chem. 14, 598 (1969).

    Google Scholar 

  164. Bock, R. and Langrock, P., “Investigation on the Quantitative Precipitation of Germanium as Sulfide,”Fresenius' Z. Anal. Chem. 239, 36 (1968), in German.

    Article  Google Scholar 

  165. Shevyalina, V. K., Shpirt, M. Ya., and Blavatnik, V. M., “Coprecipitation of Germanium with Heavy Sulphides,”Russ. J. Inorg. Chem. 12, 247 (1967).

    Google Scholar 

  166. Barboshkin, A. N., “Coprecipitation of Germanium with Arsenic Sulfides,”Tr. Ural. Politekh. Inst. 81, 166 (1959), in Russian [Chem. Abs., 55: 14035g].

    Google Scholar 

  167. Agarkova, G. A., and Aksenva, L. L., “Precipitation of Germanium on Iron Hydroxide,”Russian J. Inorg. Chem. 14, 837 (1969).

    Google Scholar 

  168. Tananaev, I. V., and Shprit, M. Ya., “Coprecipitation of Ge with Hydroxides of Trivalent Metals,”Russ. J. Inorg. Chem. 7, 1174 (1962).

    Google Scholar 

  169. Novikov, A. I., and Shchekoturova, E. K., “Separation and Concentration of Zn, Ga, Ge, As and Se by Coprecipitation with Ferric Hydroxide,”Radiokhimiya 14, 152 (1972) in Russian [Chem. Abs., 76(26):159185e].

    Google Scholar 

  170. Kislinskaya, G. E. et al., “Removal of V(V), Cr(III), Ge(IV) and Mo(VI) Trace Contaminants from Concentrated Solution of NaCl by Coprecipitation on Fe(OH)3,”Khim. Tekhno. (Kiev) 2, 9 (1979), in Russian [Chem. Abs., 91(2):7028c].

    Google Scholar 

  171. Andrianov, A. M., and Poladyan, V. E., “Isolation and Concentration of Ge from Solutions,”Zavod Lab. 40, 1064 (1974), in Russian [Chem. Abs., 82:22325e].

    Google Scholar 

  172. Sewastjanow, J. G., “Abtrennung von7Be,51Cr,54Mn und68Ge aus bestrahlten Zyklotrontargets durch Mitfallung,”Isotopenpraxis 12, 472 (1976).

    Google Scholar 

  173. Tananaev, I. V., Shprit, M. Ya., and Sendul'skaya, “Sorption of Ge on Al(OH)3Dokl. Akad. Nauk. SSSR 139, 907 (1961), in Russian [Chem. Abs., 56:4117i].

    Google Scholar 

  174. Agarkova, G. A., and Kuznetsova, N. L., “Deposition of Ge on Al(OH)3,”Izv. Vyssh. Uchebh. Zaved., Khim. Khim. Tekhnol. 13, 1740 (1970), in Russian [Chem. Abs., 74: 146919f].

    Google Scholar 

  175. Andrianov, A. M., and Koryukova, V. P., “Separation of Ge from Solutions Containing Cu Gallate and Tannate,”Zh. Prikl. Khim. 45, 1103 (1972), in Russian [Chem. Abs. 77:96526q].

    Google Scholar 

  176. Schneider, W. A., and Sandell, E. B., “Determination of Traces of Ge after CCl4 Extraction,Mikrochim. Acta pg. 262 (1954).

  177. Sauvenier, Gh., and Duyckaerts, G., “Dosage Polarographique Germanium dans des Minerais et Concentres Germaniferes,”Anal. Chim. Acta,16, 592 (1957).

    Article  Google Scholar 

  178. Nazarenko, V. A.Analytical Chemistry of Germanium [translated by N. Mandel], John Wiley & Sons, Inc., New York (1974), pg. 81.

    Google Scholar 

  179. Brihaye, C. et al., “Reactor Production and Purification of Osmium-191,”Appl. Radiat. Isot. 40, 183 (1989).

    Google Scholar 

  180. Siekierski, S., and Olszer, “Relation Between the Partition Coefficient of GeX4 Molecules (X=Cl, Br, I) and the Solubility Parameter of the Solvent,”J. Inorg. Nucl. Chem. 25, 1351 (1963).

    Article  Google Scholar 

  181. Hildebrand, J. H., and Scott, R. L.,The Solubility of Nonelectrolytes, Reinhold, New York 1950.

    Google Scholar 

  182. Buchowski, H., “Relation Between Partition Coefficients and Properties of Solvents,”Nature,194, 674 (1962).

    Google Scholar 

  183. Tanaka, K., and Takagi, N., “Extraction and Spectophotometric Determination of Tin, Arsenic and Germanium as their lodides,”Analyt. Chim. Acta,48, 357 (1969).

    Article  Google Scholar 

  184. Grimanis, A. P., and Hadzistelios, I., “Extraction Studies of Antimony Bromide into Benzene,”Anal. Chim. Acta 41, 15 (1968).

    Article  Google Scholar 

  185. Vasyutinskii, A. I. et al., “Extraction of Ge from Fluoride Solutions by Amines,”Russ. J. Inorg. Chem. 18, 1312 (1973).

    Google Scholar 

  186. Seeley, F. G., and Crouse, D. J., “Extraction of Metals from Nitrate and Sulfate Solutions by Amines,”J Chem. Eng. Data,16, 393 (1971).

    Article  Google Scholar 

  187. Kurnevich, G. I., Loiko, E. M., and Vishnevskii, V. B., “Extraction of Ge by Amine Solution,”Russ. J. Inorg. Chem. 24, 1067 (1979).

    Google Scholar 

  188. Starobinets, G. L. et al., “Effect of the Nature of Amine on the Extraction of Tripyrocatecholgermanic Acid,”Russ. J. Inorg. Chem. 22, 573 (1977).

    Google Scholar 

  189. Yakabe, K., and Minami, S., “Liquid-Liquid Extraction of Ge(IV) with Trioctylamine From Aqueous Oxalic Acid Solution,”Nippon Kagaku Kaishi 6, 969 (1981) in Japanese [Chem. Abs., 95: 173159y].

    Google Scholar 

  190. Andrianov, A. M., and Koryukova, V. P., “Extraction of Ge by Tri-n-octylamine in the Presence of Tannin,”Zh. Prikl. Khim. 45, 412 (1972) in Russian [Chem. Abs., 77: 96526q].

    Google Scholar 

  191. Pozharitskii, A.F. et al., “Extraction of Hydrogen Tartrato-germanate and Citratogermanaye by Tri-n-octylamine,”Russ. J. Inorg. Chem. 18, 1314 (1973).

    Google Scholar 

  192. Denig, R., Trautmann, N., and Herrmann, G.. “Separation of Fission Products by Extraction Chromatography. I. Determination of Partition Coefficients,”J. Radioanal. Chem. 5, 223 (1970), in German.

    Google Scholar 

  193. Robinson, R. A., Stokes, R. H., and Harold, R.,Electrolyte Solutions — the Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions, Butterworths, London (1965).

    Google Scholar 

  194. Kovtun, L. V., and Rudenko, N. P., “Composition, Extraction Constant, and Two-Phase Stability Constant of Ge(IV) 8-Quinolinolate,”Russ. J. Inorg. Chem. 25, 892 (1980).

    Google Scholar 

  195. Kovtun, L. V., and Rudenko, N. P., “The Effect of the Anion of the Salt Background of the Aqueous Phase on the Extraction of Ge(IV) 8-Hydroxyquinolinate,”Analt. Lett.,9 303 (1976).

    Google Scholar 

  196. Kovtun, L. V., and Rudenko, N. P., “Influence of the Solvent and the Composition of the Aqueous Phase on the Extraction of Germanium 8-Quinolinolate,”Russ. J. Inorg. Chem.,12 1653 (1967).

    Google Scholar 

  197. Rudenko, N. P., Somirnov, N. N., and Kovtun, L. V., “Study of the Electromigration of Ge (IV) in Organic Reagents Containing 8-hydroxyquinoline and 5,7 Dibromo-8-hydroxyquinoline,”Sov. Radiochem. 17, 514 (1976).

    Google Scholar 

  198. Weinert, C. H.-S. W., Strelow, F. W. E., and Bohmer, R. G., “The Influence of Thiourea on the Cation-Exchange Behavior of Various Elements in Dilute Nitric and Hydrochloric Acids,”Talanta,33 481 (1986).

    Article  Google Scholar 

  199. Nelson, F., and Michelson, D. C., “Ion-Exchange Procedures — IX. Cation Exchange in HBr Solutions,”J. Chromatogr.,25 414 (1966).

    Article  Google Scholar 

  200. Jha, S. K., De Corte, F., and Hoste, J., “Cation Exchange in Acetic Acid Solutions,”Anal. Chim. Acta,62, 163 (1972).

    Article  Google Scholar 

  201. Strelow, F. W. E., “Distribution Coefficients and Ion-Exchange Behavior of 46 Elements with Macroreticular Cation Exchange Resin in HCl,”Anal. Chem. 56 1053 (1984).

    Article  Google Scholar 

  202. Nelson, F., Murase, T., and K. A. Kraus, “Ion-exchange Procedures. I. Cation Exchange in Concentrated HCl, HClO4 Solutions,”J. Chromatogr. 13, 503 (1965).

    Article  Google Scholar 

  203. Weinert, C. H.-S. W., Strelow, F. W. E., and Bohmer, R. G., “Cation, Exchange in Thiourea-Hydrochloric Acid Solutions,”Talanta 30, 413 (1983).

    Article  Google Scholar 

  204. Weinert, C. H.-S. W., and Strelow, F. W. E., “Cation Exchange Behavior of the Pt Group and Some Other Rare Elements on HBr-thiourea-acetone Media,”Talanta 30, 766 (1983).

    Article  Google Scholar 

  205. Qureshi, M., and Husain, W., “Cation-Exchange Behavior of Several Elements in Formic Acid Solutions,”Talanta 18 (1971).

  206. Strelow, F. W. E., Victor, A. H. van Zyl, C. R. and Eloff, C., “Distribution Coefficients and Cation Exchange Behavior of Elements in HCl/acetone,”Anal. Chem. 43, 870 (1971).

    Article  Google Scholar 

  207. March, S. F. et al., “Cation Exchange of 53 Elements in HNO3,”Los Alamos National Laboratory, Report LA-7083 (1978).

  208. Strelow, F. W. E., Hanekom, M. D., Victor, A. H. and Eloff, C., “Distribution Coefficients and Cation Exchange Behavior of Elements in HBr/acetone Media,”Anal. Chim. Acta,76, 377 (1975).

    Article  Google Scholar 

  209. Strelow, F. W. E., “Distribution Coefficients and Cation Exchange Behavior of 45 Elements with Macroporous Resin in HCl/methanol Mixture,”Anal. Chim. Acta 76, 377 (1975).

    Article  Google Scholar 

  210. Nelson, F., Rush, R. M., and Kraus, K. A., “Anion-exchange Studies. XXVII. Absorbability of a Number of Elements in HCl-HF Solutions,”J. Am. Chem. Soc. 82, 339 (1960).

    Article  Google Scholar 

  211. Faris, J. P., “Adsorption of the Elements from Hydrofluoric Acid by Anion Exchange,”Anal. Chem. 32, 521 (1960).

    Article  Google Scholar 

  212. Schindewolf, U., and Irving, J. W., “Preparation of Carrier-Free V, Sc and As Activities from Cyclotron Targets by Ion Exchange,”Anal. Chem. 30 906 (1956).

    Article  Google Scholar 

  213. Peters, J. M., Del Fiore, G., “Distribution Coefficients for 52 Elements in Hydrochloric Acid-water-acetone Mixture of Dowex 1×8,”Radiochem. Radioanal. Lett. 21, 11 (1975).

    Google Scholar 

  214. Kuroda, R., Ishida, K., and Kiriyama, T., “Adsorption Behavior of a Number of Metals in Hydrochloric Acid on a Weakly Basic Anion Exchange Resin,”Anal. Chem. 40, 1502 (1968).

    Article  Google Scholar 

  215. Ichikawa, F., Uruno, S., and Imai, H., “Distribution of Various Elements Between HNO3 and Anion Exchange Resin,”Bull. Chem. Soc. Japan,34 952 (1961).

    Google Scholar 

  216. Faris, J. P., and Buchanan, R. F., “Anion Exchange Characteristics of Elements in Nitric Acid Medium,”Anal. Chem. 36, 1157 (1964).

    Article  Google Scholar 

  217. Huff, E., “Anion Exchange Study of a Number of Elements in Nitric-Hydrofluoric Acid Mixture,”Anal. Chem. 36, 1921 (1964).

    Article  Google Scholar 

  218. Motrenko, H. P., and Dybczynski, R., “Distribution Coefficients of 52 Elements on Strongly Basic Anion-Exchange Resin in Aqueous Solution of Orthophosphoric Acid,”J. Chromatogr. 88, 387 (1974).

    Article  Google Scholar 

  219. Strelow, F. W. E., and Bothma, C. J. C., “Anion Exchange and a Selectivity Scale for Elements in Sulfuric Acid Media with a Strongly Basic Resin,”Anal. Chem. 39, 595 (1967).

    Article  Google Scholar 

  220. Kiriyama, T., and Kuroda, R., “Distribution Coefficients of Metals on a Strongly Basic Anion-Exchange Resin in Aqueous Thiocyanic Acid,”Anal. Chim. Acta,101, 207 (1978).

    Article  Google Scholar 

  221. Van Den Winkel, P., and Decorte, F., “Anion Exchange in Acetic Acid Solutions,”Anal. Chim. Acta 56, 241 (1971).

    Article  Google Scholar 

  222. Chakravorty, M., and Khopkar, S. M., “Anion-Exchange Separation of Ga from In, Tl, Al and Other Elements in Malonic Aicd,”Chromatographia 9, 230 (1976).

    Google Scholar 

  223. Kopecky, P., Mudrova, B., and Svoboda, K., “Conditions for the Preparation and Utilization of Ge-68/Ga-68 Generator,”Int. J. Appl. Radiat. Isot. 24, 73 (1973).

    Article  Google Scholar 

  224. Kopecky, P., and Mudrova, B., “Ge-68/Ga-68 Generator for the Production of Ga-68 in an Ionic Form,”Int. J. Appl. Radiat. Isot. 25, 263 (1974).

    Article  Google Scholar 

  225. Lievens, P., and Hoste, J., “Selective Removal of Ge by Retention on Silica-Gel,”Anal. Chim. Acta 70, 462 (1974).

    Article  Google Scholar 

  226. Caletka, R., and Kotas, P., “Separation of Ge from Some Elements by Adsorption on Silica Gel,”J. Radioanal Chem.,21, 349 (1974).

    Google Scholar 

  227. Caletka, R., “Sorption of Ge on Silica Gel from Aqueous and Mixed Aqueous-Organic Solutions,”Collect. Czech. Chem. Commun. 39, 3660 (1974).

    Google Scholar 

  228. Volynets, M. P., Ermakov, A. N., and Fomina, T. V., “Thin-layer Chromatography in Inorganic Analysis. 7. Adsorption Behavior of Element lons on Silica Gel in Aqueous-acetone Solutions of Hydrochloric Acid,”Anal. Chem. of USSR 25, 1599 (1970).

    Google Scholar 

  229. Johri, K. N., Mehra Harish, C., and Kaushik, N. K., “Determination of Ge(IV), Sn(II), Pb(II), Zn(II), Cd(II) and Hg(II) by Ring Colorimetry after Separation by Thin-Layer Chromatography,”Chromatographia 3, 347 (1970).

    Google Scholar 

  230. Subrahmanyam, J., and Sastri, M. N., “Separation of Ge from As by Paper Chromatography,”J. Indian Chem. Soc. 54, 1102 (1977).

    Google Scholar 

  231. Brinkman, U. A. Th., De Vries, G., and Van Dalen, E., “Chromatographic Techniques Using Liquid Anion Exchangers. III. Systematic Thin-layer Chromatography of the Elements in Hydrochloric Acid Systems,” J. Chromatogr.25, 447 (1966).

    Article  Google Scholar 

  232. Oguma, K., and Kudoda, R., “Thin-Layer Chromatographic Behavior of a Number of Metals on DEAE-Cellulose in Organic Solvent-Sulfuric Acid Mixtures,”J. Chromatogr. 61, 307 (1971).

    Article  Google Scholar 

  233. Oguma, K., and Kudoda, R., “Thin-Layer Chromatographic Behavior of Metal lons on DEAE-cellulose in Thiocyanic Acid-Organic Solvent Mixtures”,J. Chromatogr. 52, 339 (1970).

    Article  Google Scholar 

  234. Kuroda, R., Yoshikuni, N., and Kawabuchi, K., “Use of DEAE-cellulose in Inorganic Thin-layer Chromatography”,J. Chromatogr. 47, 453 (1970).

    Article  Google Scholar 

  235. Husain, S. W., and Kazmi, S. K., “Thin Layer Chromatography of Metal lons on a New Synthetic Inorganic lon-exchanger,”Experientia 28, 988 (1972).

    Article  Google Scholar 

  236. Cerrai, E., and Ghersini, G., “Reversed-phase Partition Chromatography on Paper Treated with Bis(2-ethylhexyl)orthophosphoric Acid — Systematic Study of 67 Cations in Hydrochloric Acid,”J. Chromatogr. 24, 383 (1966).

    Article  PubMed  Google Scholar 

  237. Fink, C. G., and Dokras, V. M. “Electrodeposition and Electrowinning of Ge,”J. Electrochem. Soc. 95, 80 (1949).

    Google Scholar 

  238. Szekely, G., “Electrodeposition of Ge,”J. Electrochem. Soc. 98, 318 (1951).

    Google Scholar 

  239. Seeger, A., “Positron Annihilation at Vacancies in Metals,”J. Phys. F (Met. Phys.) 3, 248 (1973).

    Article  Google Scholar 

  240. Goland, A. W., Brookhaven National Laboratory,Report BNL 16517 (1972).

  241. West, R. N., “Positron Studies of Condensed Matter,”Adv. Physics 22, 263 (1973).

    Google Scholar 

  242. Jean, Y. C., Lambrecht, R. M., and Horvath, D., “Positron and Positronium”,Physical Sciences Data 33, 1235 (1988).

    Google Scholar 

  243. Lambrecht, R. M., and Sajad, M., “Accelerator-Derived Radionuclide Generators,”Radiochim. Acta 43, 171 (1988).

    Google Scholar 

  244. Lambrecht, R. M., “Radionuclide Generators,”Radiochim. Acta 34, 9 (1983).

    Google Scholar 

  245. Gleason, G. I., “A Positron Cow,”Int. J. Appl. Radiat. Isot.,8, 90 (1960).

    Article  PubMed  Google Scholar 

  246. Lofa, B. Z., and Makagonova, L. V., “Generator of68Ga,”Sov. Radiochem.,12, 770 (1970).

    Google Scholar 

  247. Ehrhardt, G. J., and Welch, M. J., “A New68Ge/68Ga Generator,”J. Nucl. Med. 19, 925 (1978).

    PubMed  Google Scholar 

  248. Mirzadeh, S. et al.,Evaporation-Based Ge/Ga(68) Separation, U. S. Patent No. 4,268,730, February 3, 1981.

  249. Greene, M. W., and Tucker, W. D., “An Improved68Ga Cow,”Int. J. Appl. Radiat. Isot. 12, 62 (1961).

    Article  Google Scholar 

  250. Arino, H., Skraba, W. J., Kramer, H. H., “A New Ge-68/Ga-68 Radioisotope Generator System,”Int. J. Appl. Radiat. Isot. 29, 117 (1978).

    Article  Google Scholar 

  251. Kopecky, P., Mudrova, B. and Svoboda, K., “The Study of Conditions for the Preparation and Utilization of68Ge-68Ga Generator,Int. J. Appl. Radiat. Isot.,24, 73 (1973).

    Article  Google Scholar 

  252. Malyshev, K. V.; Smirnov, V. V., “Gallium-68 Yield from Hydrated Zirconium Oxide-based Generators,”Sov. Radiochem.,17, 137 (1975).

    Google Scholar 

  253. Loc'h, C., Maziere, B., and Comar, D., “A New Generator for Ionic Gallium-68,”J. Nucl. Med. 21, 171 (1980).

    PubMed  Google Scholar 

  254. Neirinckx, R. D., and Davis, M. A., “Generator for Ionic Gallium-68,”J. Labelled Compd. Radiopharm.,16, 109 (1979).

    Google Scholar 

  255. Lewis, R. E., and Camin, L. L., “Ge-68/Ga-68 Generator for the One Step Elution of Ionic Ga-68,”J. Labelled Compd. Radiopharm. n18, 164 (1981).

    Google Scholar 

  256. Ambe, S., “Germanium-68-gallium-68 Generator with Alpha-ferric Oxide Support,”Appl. Radiat. Isot. 39, 49 (1988).

    Google Scholar 

  257. Neirinckx, R. D., and Davis, M. A., “Potential Column Chromatography for lonic Gallium-68. II. Organic lon Exchangers as Chromatographic Supports”,J. Nucl. Med. 21, 81 (1980).

    PubMed  Google Scholar 

  258. Neirinckx, R. D. et al., “Development of an Ionic Germanium-68-gallium-68 Generator. III. Chelate Resins as Chromatographic Substrates for Germanium,”Int. J. Appl. Radiat. Isot. 33, 259 (1982).

    Article  Google Scholar 

  259. Schuhmacher, J., and Maier-Borst, W., “A New Germanium-68/Gallium-68 Radioisotope Generator System for Production of Gallium-68 in Dilute Hydrochloric Acid,”Int. J. Appl. Radiat. Isot.,32, 31 (1981).

    Article  Google Scholar 

  260. Kurnevich, G. I., Vishnevskii, V. B., and Loiko, E. M., “Coordination Compounds of Ge(IV) with Polyhydric Phenols and Dimethyl Sulfoxide,”Russ. J. Inorg. Chem. 19, 375 (1974).

    Google Scholar 

  261. McElvany K. D., Hopkins K. T., and Welch, M. J., “Comparison of68Ge/68Ga Generator Systems for Radiopharmaceutical Production,”Int. J. Appl. Radiat. Isot. 35, 521 (1984).

    Article  Google Scholar 

  262. Layne, W. W., and Davis, M. A., “Development of a68Ga Generator on Alumina,”J. Nucl. Med.,21, 85 (1980), abstract.

    Google Scholar 

  263. Bahcall, J. N., and Davis, R. Jr., “Solar Neutrino: A Scientific Puzzle,”Science 191, 264 (1976).

    Google Scholar 

  264. Davis, R. Jr., Harmer, D. S., and Hoffman, K. C., “Search for Neutrinos from the Sun,”Phys. Rev. Lett. 20, 1205 (1968).

    Article  Google Scholar 

  265. Davis, R. Jr., “Solar Neutrino,”Annual Rev. Nucl. Part. Sci. 39, 467 (1989).

    Article  Google Scholar 

  266. Bahcall, J. N.,Neutrino Astrophysics, Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  267. Beier, E. W. et al., “Status of Solar Neutrino Experiment,”Nucl. Phys. A527, 653c (1991).

    Article  Google Scholar 

  268. Abazov, A. I., et al., “Search for Neutrino from Sun Using the Reaction71Ga[ve, e]71Ge,”Phys. Rev. Lett.,67, 3332 (1991).

    Article  PubMed  Google Scholar 

  269. Hirata, K. S. et al., “Results From one Thousand Days of Real-time, Directional solar Neutrino Data,”Phys. Rev. Lett. 65, 1297 (1990).

    Article  PubMed  Google Scholar 

  270. Hampel W.,Weak and Electromagnetic Interactions in Nuclei, [H. W. Klapdor ed.], Springer-Verlag, New York (1986) pg. 162.

    Google Scholar 

  271. Ward, T. E. et al., “Radiochemical Procedure for Arsenic and Germanium,”Radiochim. Acta 14, 70 (1970).

    Google Scholar 

  272. Gromov, V. V, and Bondarenko, G. P., “Separation of Gallium and Germanium in the Dissolution of Ga-Ge Alloys,”Sov. Radiochem.,27, 208 (1985).

    Google Scholar 

  273. Marmol, P. D., and Tigchelt, H. V., “A Fast Radiochemical Procedure for Separating Germanium from Fission Products,”Radiochim. Acta 17, 52 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzadeh, S., Lambrecht, R.M. Radiochemistry of germanium. Journal of Radioanalytical and Nuclear Chemistry, Articles 202, 7–102 (1996). https://doi.org/10.1007/BF02037941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02037941

Keywords

Navigation