Journal of Radioanalytical and Nuclear Chemistry

, Volume 109, Issue 2, pp 309–319 | Cite as

Prompt gamma-ray neutron activation analysis facility testing by Sm, Gd and Mn determination in rock samples

  • Z. Zaghloul
  • E. Gantner
  • M. Mostafa
  • H. J. Ache


The neutron capture gamma-ray spectroscopy facility assembled at the Institute of Radiochemistry, KfK (for analytical purposes) using a252Cf neutron source with a strength of 6·107 n/s, has been used to check its applicability and sensitivity for quantitative analyses of ores. The analysis of Sm, Cd and Mn in phosphate and monazite rock samples has been carried out. The results from this study show a variation of about 25% from the values determined by RNAA method. This discrepancy could be mainly due to the low signal-to-background ratio observed which is caused by (i) scattering of the source gammarays by the target, and (ii) interference from the 2223.1 keV neutron capture hydrogen gamma-rays produced by the moderated materials and from their compton scattering in the detector. To overcome these difficulties we suggest to introduce a 2.5 cm thick polyethylene sheet between the detector6Li-cap shielding and the target as well as to increase the detection solid angle. Also the strength of the252Cf neutron source should be increased by an order of magnitude and the neutron beam should be collimated to obtain the optimal thermal neutron flux with a low level of252Cf gamma-rays. This can be achieved by setting up between the neutron source and the target a conical polyethylene collimator with a thickness of 10 cm containing a 1 cm thick lead sheet.


Rock Sample Neutron Source Neutron Beam Neutron Capture Thermal Neutron Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. LOMBARD, T. L. ISENHOUR, P. H. HEINTZ, G. L. WOODRUFF, W. E. WILSON, Int. J. Radiation Isotopes, 19 (1968) 15.CrossRefGoogle Scholar
  2. 2.
    E. S. GLADNEY, E. T. JURNEY, D. B. CURTIS, Anal. Chem., 48 (1976) 2139.CrossRefPubMedGoogle Scholar
  3. 3.
    S. M. LOMBARD, T. L. ISENHOUR, Anal. Chem., 40 (1968) 1990.CrossRefGoogle Scholar
  4. 4.
    E. T. JURNEY, D. B. CURTIS E. S. GLADNEY, Anal. Chem., 49 (1977) 1741.CrossRefPubMedGoogle Scholar
  5. 5.
    M. P. FAILEY, D. L. ANDERSON W. H. ZOLLER, G. E. GORDON, Anal. Chem., 51 (1979) 2209.CrossRefGoogle Scholar
  6. 6.
    D. L. ANDERSON, M. P. FAILEY, W. H. ZOLLER, W. B. WALTERS, G. E. GORDON, R. M. LINDSTROM, J. Radioanal. Chem., 63 (1981) 97.Google Scholar
  7. 7.
    E. S. GLADNEY, D. B. CURTIS, E. T. JURNEY, J. Radioanal. Chem., 96 (1978) 299.Google Scholar
  8. 8.
    E. S. GLADNEY, D. B. CURTIS, E. T. JURNEY, Anal. Chim. Acta, 110 (1979) 339.CrossRefGoogle Scholar
  9. 9.
    R. HENKELMANN, H. J. BORN, J. Radioanal. Chem., 16 (1973) 473.Google Scholar
  10. 10.
    R. C. GREENWOD, Proc. 3rd Int. Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics, BNL, Upton, New York, Sept. 18–22, 1978.Google Scholar
  11. 11.
    H. K. L. GUPTA, D. F. BOLTZ, Anal. Lett., 4 (1971) 161.Google Scholar
  12. 12.
    R. C. GREENWOOD, J. H. REED, IITRI-1193-53, 1965.Google Scholar
  13. 13.
    N. C. RASMUSSEN, Y. HU KAI, T. INOUYE, V. J. ORPHAN, AFCRL-69-0071, January 1969.Google Scholar
  14. 14.
    D. DUFFEY, A. EL-KADY, F. E. SENFTLE, Nucl. Instr. Methods, 80 (1970) 149.CrossRefGoogle Scholar
  15. 15.
    J. WING, M. A. WAHLGREN, Anal. Chem., 39 (1967) 85.CrossRefGoogle Scholar
  16. 16.
    M. WAHLGREN, J. WING, D. C. STEWART, Proc. 7th Int. Conf. Modern Trends in activation Analysis, Copenhagen, 1968.Google Scholar
  17. 17.
    W. C. REINING, A. G. EVANS, Proc. 7th Int. Conf. Modern Trends in Activation Analysis, Copenhagen, 1968.Google Scholar
  18. 18.
    Y. KUSAKA, H. TSUJI, J. Radioanal. Chem., 5 (1970) 359.Google Scholar
  19. 19.
    S. USITALO, E. MAKINEN, D. O. RISKA, Proc. 4th (n, γ) Int. Symp. Grenoble, Sept. 7–11, 1981, p. 682.Google Scholar
  20. 20.
    I. P. MATTHEWS, N. M. SPYROU, Int. J. Appl. Radiation Isotopes 33 (1982) 61.CrossRefGoogle Scholar
  21. 21.
    C. G. GLAYTON, A. M. HASSAN, M. R. WORMALD, Int. J. Appl. Radiation Isotopes, 34 (1983) 83.CrossRefGoogle Scholar
  22. 22.
    F. E. SENFTLE, R. J. MACY, J. L. MIKESELL, Nucl. Instr. Methods, 158 (1979) 293.CrossRefGoogle Scholar
  23. 23.
    A. B. TANNER, R. M. MOXHAM, F. E. SENFTLE, Nucl. Instr. Methods, 100 (1972) 1.CrossRefGoogle Scholar
  24. 24.
    F. E. SENFTLE, D. DUFFEY, P. F. WIGGINS, Nucl. Techn., 10 (1971) 204.Google Scholar
  25. 25.
    A. M. HASSAN, E. GANTNER, E. MAINKA, H. RUF, U. KUHNES, M. MOSTAFA, KfK-3387, July 1982.Google Scholar
  26. 26.
    S. M. LOMBARD, T. L. ISENHOUR, Anal. Chem., 40 (1968) 1990.CrossRefGoogle Scholar
  27. 27.
    S. M. LOMBARD, T. L. ISENHOUR Anal. Chem. 41 (1969) 1113.CrossRefGoogle Scholar
  28. 28.
    E. BIEBER, T. V. EGIDY, O. W. B. SCHULT, Z. Phys., 170 (1962) 465.CrossRefGoogle Scholar
  29. 29.
    G. E. THOMAS, D. E. BLATCHINKEY, L. M. BALLINGER, Nucl. Instr. Methods, 56 (1967) 325.CrossRefGoogle Scholar
  30. 30.
    A. A. EL-KADY, D. DUFFEY, Trans. Am. Nucl. Soc., 12 (1969) 42.Google Scholar
  31. 31.
    J. P. NICHOLS, Nucl. Appl., 4 (1968) 382.Google Scholar
  32. 32.
    D. VARTSKY, K. J. ELLIS, L. WIELOPOLSKI, S. H. COHN, Nucl. Instr. Methods, 213 (1983) 437.CrossRefGoogle Scholar
  33. 33.
    C. WEITKAMP, W. MICHAELIS, H. SCHMIDT, U. FANGER, Z. Phys., 192 (1966) 423.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • Z. Zaghloul
    • 1
  • E. Gantner
    • 1
  • M. Mostafa
    • 1
  • H. J. Ache
    • 1
  1. 1.Institute für Radiochemie, KfK, GmbHKarlsruheFRG

Personalised recommendations