Sorption and desorption of technetium by humic substances under oxic and anoxic conditions

  • C. Wolfrum
  • K. Bunzl


The distribution coefficients Kd for the sorption of95mTc by peat as well as the corresponding rates of sorption and desorption were determined as a function of the concentration of the supporting electrolyte (CaCl2), the amount of dissolved oxygen and the pH of the solution. The results show that the Kd-values of Tc (added as Tc(VII)-pertechnetate) increase, if the concentration of CaCl2 or the amount of dissolved oxygen is decreased. The sorption was reversible with respect to the replacement of Tc by a CaCl2 solution. The half-times for the rates of sorption and desorption depend on the concentration of CaCl2 and dissolved oxygen and were in the range of 20–60 minutes and 500–900 minutes for the sorption and desorption processes, respectively.


Oxygen Physical Chemistry Inorganic Chemistry Dissolve Oxygen CaCl2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. WILDUNG, K. M. McFADDEN, T. R. GARLAND, J. Environ. Qual., 8 (1979) 156.Google Scholar
  2. 2.
    E. A. BONDIETTI, C. W. FRANCIS, Science, 203 (1979) 1337.Google Scholar
  3. 3.
    J. M. MOUSNY, C. MYTTENAERE, Plant and Soil, 61 (1981) 403.Google Scholar
  4. 4.
    F. O. HOFFMAN, C. T. GARTEN, Jr., J. W. HUCKABEE, D. B. LUCAS, J. Environ. Qual., 11 (1982) 134.Google Scholar
  5. 5.
    C. T. GARTEN, Jr., F. O. HOFFMAN, E. A. BONDIETTI, Health Physics, 46 (1984) 647.PubMedGoogle Scholar
  6. 6.
    M. I. SHEPPARD, T. T. VANDERGRAAF, D. H. THIBAULT, J. A. KEITH REID, Health Physics, 44 (1983) 635.PubMedGoogle Scholar
  7. 7.
    J. C. BALOGH, D. F. GRIGAL, Soil Science, 130 (1980) 278.Google Scholar
  8. 8.
    D. A. PALMER, R. E. MEYER, J. Inorg. Nucl. Chem., 43 (1981) 2979.CrossRefGoogle Scholar
  9. 9.
    B. TORSTENFELT, B. ALLARD, K. ANDERSSON, U. OLOFSSON, Report PRAV. 4.28, Department of Nuclear Chemistry, Göteborg, 1981.Google Scholar
  10. 10.
    E. R. LANDA, L. H. THORVIG, R. G. GAST, J. Environ. Qual., 6 (1977) 181.Google Scholar
  11. 11.
    K. BUNZL, B. SANSONI, Z. Pflanzenern. Bodenk., 1333 (1972) 132.Google Scholar
  12. 12.
    W. FLAIG, H. BEUTELSPACHER, E. RIETZ, Chemical Composition and Physical Properties of Humic Substances; in: J. E. GIESEKING, (Ed.), Soil Components, Vol. I. Springer Verlag, Berlin, 1975.Google Scholar
  13. 13.
    W. ZIECHMANN, Huminstoffe, Verlag Chemie, Weinheim, 1980.Google Scholar
  14. 14.
    M. SZILAGYI, Soil Science, 115 (1973) 434.Google Scholar
  15. 15.
    F. J. STEVENSON, Humus Chemistry, Wiley Interscience, New York, 1982.Google Scholar
  16. 16.
    K. GHOSH, A. CHATTOPADHYAY, C. VARADACHARI, Soil Science, 135 (1983) 193.Google Scholar
  17. 17.
    M. SCHNITZER, S. U. KAHN, Humic Substances in the Environment, Marcel Dekker, New York, 1972.Google Scholar
  18. 18.
    K. BUNZL, W. SCHMIDT, B. SANSONI, J. Soil Sci., 27 (1976) 32.Google Scholar
  19. 19.
    K. BUNZL, Anal. Chem., 50 (1978) 258.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • C. Wolfrum
    • 1
  • K. Bunzl
    • 1
  1. 1.Institut für StrahlenschutzGesellschaft für Strahlen- und Umweltforschung mbH MünchenNeuherberg(FRG)

Personalised recommendations