Journal of Radioanalytical and Nuclear Chemistry

, Volume 163, Issue 1, pp 169–180 | Cite as

Ion transport and selectivity in model lipid membranes carrying incorporated cytolytic protein toxins

  • G. Menestrina
Article
  • 34 Downloads

Abstract

We used artificial planar lipid membranes to investigate, the mode of action of cytolysins of different origin. We studied some pathologically important bacterial toxins (e. g. S. aureus α-toxin, C. perfringens Θ-toxin, B. thuringiensis δ-endotoxin and E. coli α-hemolysin). All these toxins are used by the bacteria to damage the cells of the invaded organism. We also studied cytolysins of animal origin which are used to react against the attack of foreign organisms like cytolysins from the nematocysts of sea anemones. These proteins disrupt the permeability barrier of the attacked cell membrane by opening a pore into the lipid matrix. We found that in most cases a receptor is not truly required to render them competent to bind to a cell membrane, they spontaneously insert into preformed pure lipid membranes. Several properties of the resulting pores were compared. They are generally large, water filled, and stay open for long periods. In most cases neutral molecules up to a few kDa molecular weight (like sugars and metabolites) can easily pass through the channel. They are weakly selective, usually being able to discriminate only between anions and cations. The selectivity depends on the presence of fixed charges on the protein since it is modulated by pH and by chemical modification of the protein charged residues.

Keywords

Permeability Lipid Membrane Neutral Molecule Permeability Barrier Animal Origin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. BERNHEIMER, B. RUDY, Biochim. Biophys. Acta, 864 (1986) 123.PubMedGoogle Scholar
  2. 2.
    H.L. HARVEY, in: Handbook of Toxinology, Marcel Dekker, New York, 1990.Google Scholar
  3. 3.
    S. BHAKDI, J. TRANUM-JENSEN, Rev. Physiol. Biochem. Pharmacol., 107 (1987) 147.PubMedGoogle Scholar
  4. 4.
    J. D.-E. YOUNG, T. M. YOUNG, L. P. LU, J. C. UNKELESS, Z. A. COHN, J. Exp. Med., 156 (1982) 1677.CrossRefPubMedGoogle Scholar
  5. 5.
    F. PATTUS, D. MASSOTTE, H. U. WILMSEN, J. LAKEY, D. TSERNOGLOU, A. TUCKER, M. W. PARKER, Experientia, 46 (1990) 180.PubMedGoogle Scholar
  6. 6.
    E. HABERMANN, Science, 177 (1972) 314.PubMedGoogle Scholar
  7. 7.
    H. G. BOMAN, D. HULTMARK, Annu. Rev. Microbiol., 41 (1987) 103.CrossRefPubMedGoogle Scholar
  8. 8.
    S. BHAKDI, J. TRANUM-JENSEN, Biochim. Biophys. Acta, 737 (1983) 343.PubMedGoogle Scholar
  9. 9.
    C. S. HENNEY, S. GILLIS, in: Fundamental Immunology, Raven Press, New York, 1984.Google Scholar
  10. 10.
    J. TSCHOPP, M. NABHOLZ, Annu. Rev. Immunol., 8 (1990) 279.PubMedGoogle Scholar
  11. 11.
    G. MENESTRINA, Period. Biol., 93 (1991) 201.Google Scholar
  12. 12.
    P. ROCH, C. CANICATTI, P. VALEMBOIS, Biochim. Biophys. Acta, 983 (1989) 193.PubMedGoogle Scholar
  13. 13.
    O. ALVAREZ, in: Ion Channel Reconstitution, Plenum Press, New York, 1986.Google Scholar
  14. 14.
    G. MENESTRINA, in: Sourcebook of Bacterial Protein Toxins, Academic Press, London, 1991.Google Scholar
  15. 15.
    S. H. WHITE, in: Ion Channel Reconstitution, Plenum Press, New York, 1986.Google Scholar
  16. 16.
    G. MENESTRINA, N. MACKMAN, I. B. HOLLAND, S. BHAKDI, Biochim. Biophys. Acta, 905 (1987) 109.PubMedGoogle Scholar
  17. 17.
    G. MENESTRINA, C. L. BASHFORD, C. A. PASTERNAK, Toxicon, 28 (1990) 477.CrossRefPubMedGoogle Scholar
  18. 18.
    S. BHAKDI, M. MUHLY, R. FUSSLE, Infect. Immun., 46 (1984) 318.PubMedGoogle Scholar
  19. 19.
    R. N. WEINER, E. SCHNEIDER, C. W. M. HAEST, B. DEUTICKE, R. BENZ, M. FRIMMER, Biochim. Biophys. Acta, 820 (1985) 173.PubMedGoogle Scholar
  20. 20.
    E. M. RENKIN, J. Gen. Physiol., 38 (1954) 225.PubMedGoogle Scholar
  21. 21.
    H. GINSBURG, W. D. STEIN, J. Membrane Biol., 96 (1987) 1.CrossRefGoogle Scholar
  22. 22.
    B. HILLE, Ionic Channels of Excitable Membranes, Sinauer Associates Publishers, Sunderland Massachussets, 1984.Google Scholar
  23. 23.
    G. MENESTRINA, J. Membrane Biol., 90 (1986) 177.CrossRefGoogle Scholar
  24. 24.
    S. G. SCHULTZ, Basic Principles of Membrane Transport, Cambridge University Press, New York, 1980.Google Scholar
  25. 25.
    K. S. PITZER, in: Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton Florida, 1979.Google Scholar
  26. 26.
    L. CESCATTI, C. PEDERZOLLI, G. MENESTRINA, J. Membrane Biol., 119 (1991) 53.CrossRefGoogle Scholar
  27. 27.
    R. C. PRINCE, Trends Biochem. Sci., 15 (1990) 2.CrossRefPubMedGoogle Scholar
  28. 28.
    R. C. HUGHES, A. J. RICCO, M. A. BUTLER, S. J. MARTIN, Science, 254 (1991) 74.Google Scholar
  29. 29.
    G. GRAFF, Science, 253 (1991) 1097.PubMedGoogle Scholar
  30. 30.
    J. S. SCHULTZ, Le Science, 278 (1991) 72.Google Scholar
  31. 31.
    A. OLOFSSON, U. KAVEUS, I. HACKSELL, M. THELESTAM, H., HEBERT, J. Mol. Biol., 214 (1990) 299.PubMedGoogle Scholar
  32. 32.
    K. DOUGLAS, N. A. CLARK, K. J. ROTHSCHILD, Appl. Phys. Lett., 56 (1990) 692.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • G. Menestrina
    • 1
  1. 1.Department of Physics, Faculty of SciencesUniversity of TrentoTrento(Italy)

Personalised recommendations