Skip to main content
Log in

Ion transport and selectivity in model lipid membranes carrying incorporated cytolytic protein toxins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We used artificial planar lipid membranes to investigate, the mode of action of cytolysins of different origin. We studied some pathologically important bacterial toxins (e. g. S. aureus α-toxin, C. perfringens Θ-toxin, B. thuringiensis δ-endotoxin and E. coli α-hemolysin). All these toxins are used by the bacteria to damage the cells of the invaded organism. We also studied cytolysins of animal origin which are used to react against the attack of foreign organisms like cytolysins from the nematocysts of sea anemones. These proteins disrupt the permeability barrier of the attacked cell membrane by opening a pore into the lipid matrix. We found that in most cases a receptor is not truly required to render them competent to bind to a cell membrane, they spontaneously insert into preformed pure lipid membranes. Several properties of the resulting pores were compared. They are generally large, water filled, and stay open for long periods. In most cases neutral molecules up to a few kDa molecular weight (like sugars and metabolites) can easily pass through the channel. They are weakly selective, usually being able to discriminate only between anions and cations. The selectivity depends on the presence of fixed charges on the protein since it is modulated by pH and by chemical modification of the protein charged residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. BERNHEIMER, B. RUDY, Biochim. Biophys. Acta, 864 (1986) 123.

    PubMed  Google Scholar 

  2. H.L. HARVEY, in: Handbook of Toxinology, Marcel Dekker, New York, 1990.

    Google Scholar 

  3. S. BHAKDI, J. TRANUM-JENSEN, Rev. Physiol. Biochem. Pharmacol., 107 (1987) 147.

    PubMed  Google Scholar 

  4. J. D.-E. YOUNG, T. M. YOUNG, L. P. LU, J. C. UNKELESS, Z. A. COHN, J. Exp. Med., 156 (1982) 1677.

    Article  PubMed  Google Scholar 

  5. F. PATTUS, D. MASSOTTE, H. U. WILMSEN, J. LAKEY, D. TSERNOGLOU, A. TUCKER, M. W. PARKER, Experientia, 46 (1990) 180.

    PubMed  Google Scholar 

  6. E. HABERMANN, Science, 177 (1972) 314.

    PubMed  Google Scholar 

  7. H. G. BOMAN, D. HULTMARK, Annu. Rev. Microbiol., 41 (1987) 103.

    Article  PubMed  Google Scholar 

  8. S. BHAKDI, J. TRANUM-JENSEN, Biochim. Biophys. Acta, 737 (1983) 343.

    PubMed  Google Scholar 

  9. C. S. HENNEY, S. GILLIS, in: Fundamental Immunology, Raven Press, New York, 1984.

    Google Scholar 

  10. J. TSCHOPP, M. NABHOLZ, Annu. Rev. Immunol., 8 (1990) 279.

    PubMed  Google Scholar 

  11. G. MENESTRINA, Period. Biol., 93 (1991) 201.

    Google Scholar 

  12. P. ROCH, C. CANICATTI, P. VALEMBOIS, Biochim. Biophys. Acta, 983 (1989) 193.

    PubMed  Google Scholar 

  13. O. ALVAREZ, in: Ion Channel Reconstitution, Plenum Press, New York, 1986.

    Google Scholar 

  14. G. MENESTRINA, in: Sourcebook of Bacterial Protein Toxins, Academic Press, London, 1991.

    Google Scholar 

  15. S. H. WHITE, in: Ion Channel Reconstitution, Plenum Press, New York, 1986.

    Google Scholar 

  16. G. MENESTRINA, N. MACKMAN, I. B. HOLLAND, S. BHAKDI, Biochim. Biophys. Acta, 905 (1987) 109.

    PubMed  Google Scholar 

  17. G. MENESTRINA, C. L. BASHFORD, C. A. PASTERNAK, Toxicon, 28 (1990) 477.

    Article  PubMed  Google Scholar 

  18. S. BHAKDI, M. MUHLY, R. FUSSLE, Infect. Immun., 46 (1984) 318.

    PubMed  Google Scholar 

  19. R. N. WEINER, E. SCHNEIDER, C. W. M. HAEST, B. DEUTICKE, R. BENZ, M. FRIMMER, Biochim. Biophys. Acta, 820 (1985) 173.

    PubMed  Google Scholar 

  20. E. M. RENKIN, J. Gen. Physiol., 38 (1954) 225.

    PubMed  Google Scholar 

  21. H. GINSBURG, W. D. STEIN, J. Membrane Biol., 96 (1987) 1.

    Article  Google Scholar 

  22. B. HILLE, Ionic Channels of Excitable Membranes, Sinauer Associates Publishers, Sunderland Massachussets, 1984.

    Google Scholar 

  23. G. MENESTRINA, J. Membrane Biol., 90 (1986) 177.

    Article  Google Scholar 

  24. S. G. SCHULTZ, Basic Principles of Membrane Transport, Cambridge University Press, New York, 1980.

    Google Scholar 

  25. K. S. PITZER, in: Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton Florida, 1979.

    Google Scholar 

  26. L. CESCATTI, C. PEDERZOLLI, G. MENESTRINA, J. Membrane Biol., 119 (1991) 53.

    Article  Google Scholar 

  27. R. C. PRINCE, Trends Biochem. Sci., 15 (1990) 2.

    Article  PubMed  Google Scholar 

  28. R. C. HUGHES, A. J. RICCO, M. A. BUTLER, S. J. MARTIN, Science, 254 (1991) 74.

    Google Scholar 

  29. G. GRAFF, Science, 253 (1991) 1097.

    PubMed  Google Scholar 

  30. J. S. SCHULTZ, Le Science, 278 (1991) 72.

    Google Scholar 

  31. A. OLOFSSON, U. KAVEUS, I. HACKSELL, M. THELESTAM, H., HEBERT, J. Mol. Biol., 214 (1990) 299.

    PubMed  Google Scholar 

  32. K. DOUGLAS, N. A. CLARK, K. J. ROTHSCHILD, Appl. Phys. Lett., 56 (1990) 692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menestrina, G. Ion transport and selectivity in model lipid membranes carrying incorporated cytolytic protein toxins. Journal of Radioanalytical and Nuclear Chemistry, Articles 163, 169–180 (1992). https://doi.org/10.1007/BF02037491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02037491

Keywords

Navigation