Journal of Radioanalytical and Nuclear Chemistry

, Volume 120, Issue 2, pp 387–392 | Cite as

Study of ion beam induced mixing in Sn/Si system using electrical resistivity measurements

  • A. J. Abu El-Haija
  • K. A. Al-Saleh
  • N. A. Halim
  • J. M. Khalifeh
  • N. S. Saleh


The ion-beam mixing of Sn thin film evaporated on silicon has been investigated by continuously measuring the electrical resistivity of the sample during irradiation by Kr ions. The resistivity results exhibit a tendency toward a saturation process and allow the determination of the critical dose corresponding to the total mixing condition. The variation of the volume fraction of intermixed atoms as a function of the ion dose has been deduced and compared with a semiempirical formula to explain the observed mixing kinetics. A linear dependence of the volume fraction of the intermixed atoms on the fluence is observed, which is a signature of recoil type mixing.


Silicon Physical Chemistry Thin Film Inorganic Chemistry Electrical Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. PAINE, R. S. AVERBACK, Nucl. Instrum. Methods, B7/8 (1985) 666.Google Scholar
  2. 2.
    R. S. AVERBACK, Nucl. Instrum. Methods, B15 (1986) 675.Google Scholar
  3. 3.
    Z. L. LIAU, J. W. MAYER, W. L. BROWN, J. M. POATE, J. Appl. Phys., 49 (1978) 5295.CrossRefGoogle Scholar
  4. 4.
    J. G. PERKINS, P. T. STROUD, Nucl. Instrum. Methods, 102 (1972) 109.CrossRefGoogle Scholar
  5. 5.
    CUI FU-ZHAI, LI HENG-DE, Nucl. Instrum. Methods, B 7/8 (1985) 650.Google Scholar
  6. 6.
    U. LITTMARK, W. O. HOFER, Nucl. Instrum. Methods, 170 (1980) 177.CrossRefGoogle Scholar
  7. 7.
    R. A. MOLINE, G. W. REUTLINGER, J. C. NORTH, Atomic Collisions in Solids, Vol. 1, S. DATZ et al. (Eds), Plenum Press, New York, p. 159.Google Scholar
  8. 8.
    R. S. NELSON, Rad. Effects, 2 (1969) 47.Google Scholar
  9. 9.
    U. LITTMARK, W. O. HOFER, Nucl. Instrum. Methods, 168 (1980) 329.CrossRefGoogle Scholar
  10. 10.
    G. CARTER, D. G. ARMOUR, D. C. INGRAM, R. WEBB, NEWCOMBE, Rad. Effects Lett., 43 (1979) 233.Google Scholar
  11. 11.
    F. N. SCHWETTMANN, Appl. Phys. Lett., 22 (1973) 570.CrossRefGoogle Scholar
  12. 12.
    S. MATTESON, M.-A. NICOLET, Ann. Rev. Mater. Sci., 13 (1983) 339.CrossRefGoogle Scholar
  13. 13.
    S. P. MURAKA, M. H. HEAD, C. J. DOHERTY, D. B. FRASER, J. Electrom. Soc., 129 (1982) 293.Google Scholar
  14. 14.
    C. JAOUEN, J. P. RIVIERE, A. BELLARA, J. DELAFOND, Nucl. Instrum. Methods, B 7/8 (1985) 591.Google Scholar
  15. 15.
    T. KANAYAMA, H. TANOUE, T. TRURUSHIMA, Jap. J. Appl. Phys., 23 (1984) 277.Google Scholar
  16. 16.
    W. RIGGS, W. A. EVANS, Trans. Inst., 3 (1981) 99.Google Scholar
  17. 17.
    R. COLLINS, Rad. Effects 98 (1986) 167.Google Scholar
  18. 18.
    K. G. PRASAD, M. B. KURUP, A. BHAGAWAT, Nucl. Instrum Methods, B15 (1986) 698.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • A. J. Abu El-Haija
    • 1
  • K. A. Al-Saleh
    • 1
  • N. A. Halim
    • 1
  • J. M. Khalifeh
    • 1
  • N. S. Saleh
    • 1
  1. 1.Department of PhysicsUniversity of Jordan(Amman-Jordan)

Personalised recommendations