Skip to main content
Log in

A critical body size for use of pheromones in mate location

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pheromones have demonstrated importance in mate location in many insect species. Because chemoreception is the most universal sense, it has been assumed that pheromones also are important in aquatic organisms, including bacteria, but few have been found. The physical limits on effective strategies for organisms to come into contact for mating were modeled with assumptions appropriate for organisms less than a millimeter in size in an open aquatic environment. One sex was assumed to be motile, while the other sex was passive or devoted energy to locomotion or to diffusible pheromone production. Assuming spherical organisms, random locomotion by the second sex at the same velocity as the first sex increases the chances of contact by a factor of 4/3 over being passive; this ratio is independent of size. For detection by contact, the effectiveness of searching increases with the third power of the radius of the organisms; for detection by pheromones, search effectiveness increases with the seventh power of the radius above a critical size. Diverting energy from motility to pheromone production is not productive for organisms smaller than the critical size, which corresponds to a radius of 1.8 times the square root of the diffusion coefficient of the pheromone times the threshold concentration for detection divided by the rate of pheromone production per unit volume of organism. Thus, pheromone production is very favorable for organisms much above the critical size, which appears to be between 0.2 and 5 mm in water. On the other hand, bacteria are probably too small to use diffusable pheromones for mate location; most protozoans and rotifers may also be too small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, J. 1975. Chemotaxis in bacteria.Annu. Rev. Biochem. 44:341–356.

    PubMed  Google Scholar 

  • Aloia, R.C., andMoretti, R.L. 1973. Mating behavior and the ultrastructure of copulation in the rotiferAsplanchna brightwelli.Trans. Am. Microsc. Soc. 90:371–380.

    Google Scholar 

  • Altman, P.L. andDittmer, D.S. 1974. Biology Data Book. Federation of American Societies for Experimental Biology, Bethesda, Maryland.

    Google Scholar 

  • Ameyaw-Akumfi, C., andHazlett, B.A. 1975. Sex recognition in the crayfishProcambarus clarkii.Science 190:1225–1226.

    PubMed  Google Scholar 

  • Atema, J., andEngstrom, D.G. 1971. Sex pheromone in the lobster,Homarus americanus.Nature 232:261–263.

    PubMed  Google Scholar 

  • Atema, J., Fay, R.R., Popper, A.N., andTavolga, W.N. 1988. Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Google Scholar 

  • Berg, H.C. 1983. Random Walks in Biology. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Blades, P.I. 1977. Mating behavior ofCentropages typicus.Mar. Biol. 40:47–64.

    Google Scholar 

  • Blades, P.I., andYoungbluth, M.J. 1979. Mating behavior ofLabidocera aestiva (Copepoda: Calanoida).Mar. Biol. 51:339–355.

    Google Scholar 

  • Blades, P.I., andYoungbluth, M.J. 1980. Morphological, physiological and behavioral aspects of mating in calanoid copepods, pp. 39–51,in W.C. Kerfoot (ed.). Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Boland, W., Jaenicke, L., Müller, D.G., andPeters, A. 1984. Differentiation of algal chemoreceptors.Eur. J. Biochem. 144:169–176.

    PubMed  Google Scholar 

  • Borowsky, B., Augelli, C.E., andWilson, S.R. 1987. Towards chemical characterization of waterborne pheromone of amphipod crustacean,Microdeutopus gryllotalpa.J. Chem. Ecol. 13:1673–1680.

    Google Scholar 

  • Burton, R.S. 1985. Mating system of the intertidal copepodTigriopus californicus.Mar. Biol. 86:247–252.

    Google Scholar 

  • Carr, W.E.S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–27,in J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Google Scholar 

  • Chow-Fraser, P., andMaly, E.J. 1988. Aspects of mating, reproduction, and co-occurrence in three freshwater calanoid copepods.Freshwater Biol. 19:95–108.

    Google Scholar 

  • Crawford, D.W. 1992. Metabolic cost of motility in planktonic protists: Theoretical considerations on size scaling and swimming speed.Microb. Ecol. 24:1–10.

    Google Scholar 

  • Crease, T.J., andHebert, P.D.N. 1983. A test for the production of sexual pheromones byDaphnia magna (Crustacea: Cladocera).Freshwater Biol. 13:491–496.

    Google Scholar 

  • Devreotes, P. 1989.Dictyostelium discoideum: A model system for cell-cell interactions in development.Science 245:1054–1058.

    PubMed  Google Scholar 

  • Dunham, P.J. 1988. Pheromones and behavior in Crustacea, pp. 375–392,in H. Lauffer and R.G.H. Downer (eds.). Endocrinology of Selected Invertebrate Types. Alan R. Liss, New York.

    Google Scholar 

  • Dusenbery, D.B. 1992. Sensory Ecology, W.H. Freeman, New York.

    Google Scholar 

  • Dworkin, M. 1992. Prokaryotic diversity, pp. 48–74in A. Balows, Trüper, H.G., Dworkin, M., Harder W., and Schleifer, K.-H. (eds.). The Prokaryotes, 2nd ed., Vol. I. Springer-Verlag, New York.

    Google Scholar 

  • Epp, R.W. andLewis, W.M., Jr. 1979. Sexual dimorphism inBrachionus plicatilis (Rotifera): Evolutionary and adaptive significance.Evolution 33:919–928.

    Google Scholar 

  • Fenchel, T., andFinlay, B.J. 1983. Respiration rates in heterotrophic, free-living protozoa.Microb. Ecol. 9:99–122.

    Google Scholar 

  • Gerritsen, J. 1980. Sex and parthenogenesis in sparse populations.Am. Nat. 115:718–742.

    Google Scholar 

  • Gerritsen, J., andStrickler, J.R. 1977. Encounter probabilities and community structure in zooplankton: A mathematical model.J. Fish. Res. Board Can. 34:73–82.

    Google Scholar 

  • Gilbert, J.J. 1963. Contact chemoreception, mating behavior, and sexual isolation in the rotifer genusBrachionus.J. Exp. Biol. 40:625–641.

    Google Scholar 

  • Gleeson, R.A., Adams, M.A., andSmith, A.B., III 1984. Characterization of a sex pheromone in the blue crab,Callinectes sapidus: Crustecdysone studies.J. Chem. Ecol. 10:913–921.

    Google Scholar 

  • Goldstein, S.F. 1992. Flagellar beat patterns in algae. pp. 99–153,in M. Melkonian (ed.). Algal Cell Motility. Chapman and Hall, New York.

    Google Scholar 

  • Griffiths, A.M., andFrost, B.W. 1976. Chemical communication in the marine planktonic copepodsCalanus pacificus andPseudocalanus sp.Crustaceana 30:1–8.

    Google Scholar 

  • Haq, S.M. 1972. Breeding ofEuterpina acutiforns, a harpacticoid copepod, with special reference to dimorphic males.Mar. Biol. 15:221–235.

    Google Scholar 

  • Hara, T.J. 1993. Chemoreception, pp. 191–218,in D.H. Evans (ed.). Physiology of Fishes. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Honda H., andMiyake, A. 1975. Taxis to a conjugation-inducing substance in the ciliateBlepharisma.Nature 257:678–680.

    PubMed  Google Scholar 

  • Jacobs, J. 1961. Laboratory cultivation of the marine copepodPseudodiaptomus coronatus Williams.Limnol. Oceanogr. 6:443–446.

    Google Scholar 

  • Jacoby, C.A., andYoungbluth, M.J. 1983. Mating behavior in three species ofPseudodiaptomus (Copepoda: Calanoida).Mar. Biol. 76:77–86.

    Google Scholar 

  • Katona, S.A. 1973. Evidence for sex pheromones in planktonic copepods.Limnol. Oceanogr. 81:574–583.

    Google Scholar 

  • Kauzmann, W. 1966. Kinetic Theory of Gases. W.A. Benjamin, New York.

    Google Scholar 

  • Kochert, G. 1978. Sexual pheromones in algae and fungi.Annu. Rev. Plant Physiol. 29:461–486.

    Google Scholar 

  • Lazzaretto, I., Salvato, B., andLibertini, A. 1990. Evidence of chemical signalling inTrigriopus fulvus (Copepoda, Harpacticoida).Crustaceana 59:171–179.

    Google Scholar 

  • Luporini, P., andMiceli, C. 1986. Mating Pheromones, pp. 263–299,in J.G. Gall (ed.). The Molecular Biology of Ciliated Protozoa. Academic Press, New York.

    Google Scholar 

  • Maier, I., andMüller, D.G. 1986. Sexual pheromones in algae.Biol. Bull. 170:145–175.

    Google Scholar 

  • McLeese, D.W. 1970. Detection of dissolved substances by the American lobster (Homarus americanus) and olfactory attraction between lobsters.J. Fish. Res. Board Can. 27:1371–1378.

    Google Scholar 

  • Meister, M., Lowe, G., andBerg, H.C. 1987. The proton flux through the bacterial flagellar motor.Cell 49:643–650.

    PubMed  Google Scholar 

  • Miyake, A. 1981. Cell interaction by gamones inBlepharisma, pp. 95–129,in D.H. O'Day and P.A. Horgen (eds.). Sexual Interactions in Eukaryotic Microbes. Academic Press, New York.

    Google Scholar 

  • Pommerville, J. 1981. The role of sexual pheromones inAllomyces, pp. 53–72,in D.H. O'Day and P.A. Horgen (eds.). Sexual Interactions in Eukaryotic Microbes. Academic Press, New York.

    Google Scholar 

  • Purcell, E.M. 1977. Life at low Reynolds number.Am. J. Phys. 45:3–11.

    Google Scholar 

  • Raper, K.B. 1935.Dictyostelium discoideum: A new species of slime mold from decaying forest leaves.J. Agric. Res. 50:135–147.

    Google Scholar 

  • Raper, J.R. 1970. Chemical ecology among lower plants, pp. 21–42,in E. Sondheimer and J.B. Simeone (eds.). Chemical Ecology. Academic Press, New York.

    Google Scholar 

  • Rouse, H. 1961. Fluid Mechanics for Hydraulic Engineers. Dover Publications, New York.

    Google Scholar 

  • Ryan, E.P. 1966. Pheromone: Evidence in a decapod crustacean.Science 151:340–341.

    PubMed  Google Scholar 

  • Snell, T.W., andGarman, B.L. 1986. Encounter probabilities between male and female rotifers.J. Exp. Mar. Biol. Ecol. 97:221–230.

    Google Scholar 

  • Snell, T.W., andHawkinson, C.A. 1983. Behavioral reproductive isolation among populations of the rotiferBrachionus plicatilis.Evolution 37:1294–1305.

    Google Scholar 

  • Snell, T.W., andNacionales, M.A. 1990. Sex pheromone communication inBrachionus plicatilis (Rotifera).Comp. Biochem. Physiol. 97A:211–216.

    Google Scholar 

  • Soll, D.R. 1988. “DMS,” a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: Its application toDictyostelium chemotaxis.Cell Motil. Cytoskeleton 10:91–106.

    PubMed  Google Scholar 

  • Stanhope, M.J., Connelly, M.M., andHartwick, B. 1992. Evolution of a crustacean chemical communication channel: Behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone.J. Chem. Ecol. 18:1871–1887.

    Google Scholar 

  • Stephens, K. 1986. Pheromones among the procaryotes.Crit. Rev. Microbiol. 13:309–334.

    PubMed  Google Scholar 

  • Tanford, C. 1961. Physical Chemistry of Macromolecules. John Wiley & Sons, New York.

    Google Scholar 

  • Uchima, M., andMurano, M. 1988. Mating behavior of the marine copepodOithona davisae.Mar. Biol. 99:39–45.

    Google Scholar 

  • Vlymen, W. 1970. Energy of expenditure of swimming copepods.Limnol. Oceanogr. 15:348–356.

    Google Scholar 

  • Vogel, S. 1981. Life in Moving Fluids. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Watras, C.J. 1983. Mate location by diaptomid copepods.J. Plank. Res. 5:417–425.

    Google Scholar 

  • Weast, R.C. 1970. CRC Handbook of Chemistry and Physics. The Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  • Weast, R.C. 1985. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dusenbery, D.B., Snell, T.W. A critical body size for use of pheromones in mate location. J Chem Ecol 21, 427–438 (1995). https://doi.org/10.1007/BF02036740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02036740

Key Words

Navigation