Journal of Radioanalytical and Nuclear Chemistry

, Volume 198, Issue 2, pp 457–466 | Cite as

Determination of traces of uranium in tungsten and molybdenum by radiochemical neutron activation analysis via the fission product140Ba

  • G. Küppers
  • G. Erdtmann
Article

Abstract

A radiochemical separation procedure has been developed to determine traces of uranium in tungsten and molybdenum. In this procedure the fission product140Ba, as indicator nuclide for uranium, is selectively separated from the matrix activities and from all other long-lived activation and fission products and obtained at high purity. The radionuclide in the final fraction is sufficiently pure so that it can be measured with high counting efficiency by β-counting. The separation procedure consists of two steps: a cation-exchange separation to separate barium from the anionic matrix tungste or molybdate, and many other elements. In the second step the Ba-fraction is further purified by precipitation of barium as barium chloride in 8M hydrochloric acid. The precipitate is then dissolved in water for β-counting via the Cerenkov effect. The chemical yield for barium is 94.6±2.6%. When samples of 0.1 g, a thermal neutron flux of 2·1013 n·cm−2·s−1, an irradiation time of 10 hours and a measuring time of 2 hours were applied, then the detection limit of uranium was 4 ng/g.

Keywords

Uranium Barium Neutron Activation Analysis Fission Product Separation Procedure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. C. MAY, M. H. WOODS, IEEE Trans. Electronic Devices ED-26, No. 1, (1979) 2.Google Scholar
  2. 2.
    J. PETERS, C. THIESSEL, B. BISCHOFER, Fresenius Z. Anal. Chem., 336 (1990) 16.Google Scholar
  3. 3.
    G. ERDTMANN, H. PETRI, B. KAYSSER, G. KÜPPERS, Trans. Amer. Nucl. Soc., 56 (1988) 200.Google Scholar
  4. 4.
    G. ERDTMANN, H. PETRI, B. KAYSSER, G. KÜPPERS, J. Trace and Microprobe Techniques, 6 (1988) No. 3, 337.Google Scholar
  5. 5.
    G. KÜPPERS, G. ERDTMANN, J. Radioanal. Nucl. Chem., 160 (1992) 425.Google Scholar
  6. 6.
    G. ERDTMANN, J. Radioanal. Chem., 10 (1972) 137.Google Scholar
  7. 7.
    K. RENGAN, Int. Biotechnol. Lab., 4 (3) (1986) 20.Google Scholar
  8. 8.
    L. I. WIEBE, S. A. McQUARRIE, C. EDISS, W. MAIER-BORST, F. HELUS, J. Radioanal. Chem., 60 (1980) 385.Google Scholar
  9. 9.
    G. KÜPPPERS, G. ERDTMANN, J. Radioanal. Nucl. Chem., 168 (1993) 457.Google Scholar
  10. 10.
    G. ERDTMANN, JÜL-2561, Dec. 1991.Google Scholar
  11. 11.
    F. W. WALKER, J. R. PARRINGTON, F. FEINER, Chart of the Nuclides, Knoll Atomic Power Laboratory, Naval Reactors, U.S. Department of Energy, 1988.Google Scholar
  12. 12.
    H. PETRI, S. KRIEGER, D. WOLTERS, Proc. Int.k 0 Users Workshop, Gent, Sep. 30–Oct. 2, 1992.Google Scholar
  13. 13.
    G. KÜPPERS, G. ERDTMANN, Proc. Int.k 0 Users Workshop, Gent, Sep. 30–Oct. 2, 1992.Google Scholar
  14. 14.
    L. A. CURRIE, Anal. Chem., 40 (1968) 586.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • G. Küppers
    • 1
  • G. Erdtmann
    • 1
  1. 1.Central Department of Analytical Chemistry (ZCH)Research Center Jülich (KFA)Jülich(Germany)

Personalised recommendations