Journal of Radioanalytical and Nuclear Chemistry

, Volume 195, Issue 1, pp 133–138 | Cite as

Determination of the elemental homogeneity of selected biological organs by 2MeV proton induced X-ray emission analysis

  • A. C. Beach
  • N. M. Spyrou
Application of Radioanalytical Techniques to Biological and Biomedical Sciences


The use of finite size sub-samples to derive elemental concentrations which are representative of a tissue or organ as a whole are subject to errors arising from the heterogeneous nature of biological specimens. Proton induced X-ray emission (PIXE) analysis is employed to identify element variances in porcine liver, kidney and heart and sampling factors, which are the minimum mass of sample required to reduce concentration variability to a given level, are calculated. This analysis highlights the inhomogeneous nature of biological specimens and the need for clearly defined sampling protocols.


Finite Size Heterogeneous Nature 2MeV Proton Sampling Protocol Biological Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nooijen, J L, van den Hamer, C J A, Houtman, J P W, Schalm, S W, Clin. Chim. Acta, 113(1981)335.PubMedGoogle Scholar
  2. 2.
    Lievens, P, Versieck, J, Cornelis, R Hoste, J, J. Radioanal. Chem., 37(1977)483.Google Scholar
  3. 3.
    Koenig, W, Richter, F W, Meinel, B, Bode, J Ch, J. Clin. Chem. Clin. Biochem., 17(1979)23.PubMedGoogle Scholar
  4. 4.
    Livingstone, H D, Proc. 5th Ann. Conf. Trace Subst. Environ. Health (Hemphill, DD ed.), University of Missouri, June 29–July 1, (1971).Google Scholar
  5. 5.
    Tanaka, M, Matsugi, E, Miyasaki, K, Yamagata, T et al, Nucl. Instr. Meth. Phys. Res., B22(1987)152.Google Scholar
  6. 6.
    Bartsch, P, Collignon, A, Weber, G, Robaye G et al, Arch. Environ. Health, 37, 2(1982)111.PubMedGoogle Scholar
  7. 7.
    Lindegaard, P M, Hansen, S O, Christensen, J E J, Andersen, B B et al, Biol. Trace Elem. Res., 25(1990)97.PubMedGoogle Scholar
  8. 8.
    Gawlick, D, Behne, D, Bratter, P, Gatschke, W et al, J. Clin. Chem. Clin. Biochem., 20,7(1982)499.PubMedGoogle Scholar
  9. 9.
    Heydorn, K, Damsgaard, E, J. Radioanal. Nucl. Chem., 110,2(1987)539.Google Scholar
  10. 10.
    International Commission on Radiological Protection (ICRP), Report of the Task Group on Reference Man, ICRP-23, Pergamon Press, Oxford, 1975.Google Scholar
  11. 11.
    Clayton, E, PIXAN, The Lucas Heights LIXE analysis computer package, Australian Atomic Energy Commission, Lucas Heights, AAEC/M113, (1986).Google Scholar
  12. 12.
    Passmore, R, Robson, J S (eds.), A companion to medical studies, Vol. 1, 2nd ed., Blackwell, Oxford, 1976.Google Scholar
  13. 13.
    Koirtyohann, S R, Hopps, H C, Fed. Proc., 40,8(1981)2143.PubMedGoogle Scholar
  14. 14.
    Heydorn, K, Neutron activation analysis for clinical trace element research, Vol. 1, CRC Press, Boca Raton, Florida, 1984.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • A. C. Beach
    • 1
  • N. M. Spyrou
    • 1
  1. 1.Department of PhysicsUniversity of SurreyGuildfordUK

Personalised recommendations