Journal of Radioanalytical and Nuclear Chemistry

, Volume 211, Issue 1, pp 69–76 | Cite as

Positron lifetime studies of free volume hole size distribution in amorphous and in semi-crystalline polymers

  • G. Dlubek
  • A. P. Clarke
  • H. M. Fretwell
  • S. B. Dugdale
  • M. A. Alam
Contributed Papers


Positron lifetime spectroscopy has been applied to estimate the free-volume hole size distribution in glassy polycarbonate (PC) and polystyrene (PS) as well as in plastically deformed and undeformed, semi-crystalline polyethylene (HDPE). The hole radius density distribution is determined from the ortho-positronium lifetime distribution which is obtained via a Laplace-inversion of the positron lifetime spectrum. The hole volume density distribution and the number density distribution of holes is estimated from the hole radius density distribution. In PC and in PS all of the distributions may be well approximated by a single Gaussian. The hole radius and the hole number density distributions have centres <r> and <v n > at 0.29 nm and 0.1 nm3 in PC, and at 0.28 nm and 0.09 nm3 in PS. The FWHM of the corresponding distributions are 0.042 nm and 0.040 nm3 (PC), and 0.039 nm and 0.34 nm3 (PS), respectively. Both, the shape and the width of the distributions correlate well with the free volume theory of BUECHE. In PE the lifetime spectra consist of four components. The o-Ps lifetime distribution is bimodal and may be attributed to o-Ps annihilation in the crystalline and in the amorphous phase of the polymer. The corresponding hole size distributions show definite changes of their position and width following plastic deformation which we attribute to homogeneous crystal lattice dilatation and/or a local disorder in the crystals and to an increase in the eccentricity of holes in the amorphous phase.


HDPE Positron Lifetime Lifetime Distribution Lifetime Spectrum Free Volume Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. BRANDT, S. BERKO, W. W. WALKER, Phys. Rev., 15 (1960) 1289.Google Scholar
  2. 2.
    V. I. GOLDANSKII, Atomic En. Rev., 6 (1968) 3.Google Scholar
  3. 3.
    S. J. TAO, J. Chem. Phys., 56 (1972) 5499.Google Scholar
  4. 4.
    M. ELDRUP, P. LIGHTBODY, J. N. SHERWOOD, Chem. Phys., 63 (1981) 51.Google Scholar
  5. 5.
    A. V. GOLDANSKII, V. A. ONISHUK, V. P. SHANTAROVICH, Phys. Stat. Sol., A102 (1987) 559.Google Scholar
  6. 6.
    H. NAKANISHI, Y. C. JEAN, in: Positron and Positronium Chemistry, Studies in Physical and Theoretical Chemistry, Vol. 57, D. M. SCHRADER and Y. C. JEAN (Eds), Elsevier, Amsterdam, 1988, p. 159.Google Scholar
  7. 7.
    S. J. WANG, Y. C. JEAN, in: Ref. 6,, p. 255.Google Scholar
  8. 8.
    R. B. GREGORY, A. PROCYK, in: Ref. 6, p. 524.Google Scholar
  9. 9.
    Q. DENG, F. ZANDIEHNADEM, Y. C. JEAN, Macromolecules, 25 (1992) 1090.Google Scholar
  10. 10.
    F. BUECHE, J. Chem. Phys., 21 (1953) 1850.Google Scholar
  11. 11.
    LIFSPECFIT 5.1. Lifetime spectrum fit version 5.1, M. PUSKA, P. E. NYBERG and H. KAUPPINEN, Technical University of Helsinki, 1992.Google Scholar
  12. 12.
    J. LIU, Q. DENG, X. C. JEAN, Macromolecules, 26 (1993) 7149.Google Scholar
  13. 13.
    W. BRANDT, I. SPIRN, Phys. Rev., 142 (1966) 231.Google Scholar
  14. 14.
    H. J. ACHE, in: Ref. 6,, p. 318.Google Scholar
  15. 15.
    J. SERNA, J. Ch. ABBE, G. DUPLÂTRE, Phys. Stat. Sol., A115 (1989) 389.Google Scholar
  16. 16.
    G. REITER, P. KINDL, Phys. Stat. Sol., A118 (1990) 161.Google Scholar
  17. 17.
    J. TINO, J. KRISTIAK, Z. HLOUSKOVE, O. SAUSA, Eur. Polym. J., 29 (1993) 95.Google Scholar
  18. 18.
    G. KIRCHHEIM, J. Polym. Sci.: Part B: Polymer Phys., 31 (1993) 1373.Google Scholar
  19. 19.
    S. MISRA, W. L. MATTICE, Macromolecules, 26 (1993) 7274.Google Scholar
  20. 20.
    J. D. McGERVEY, ZHIBIN YU, A. M. JAMIESON, R. SIMHA, in: Positron Annihilation, Proc. of the 10th Intern. Conf., Y.-J. HE, B.-S. CAO, Y. C. JEAN (Eds), Mat. Sci. Forum, 175–178, Trans. Tech. Publ., 1995, p. 727.Google Scholar
  21. 21.
    O. E. MOGENSEN, Positron Annihilation in Chemistry, Springer-Verlag, Berlin, Heidelberg, 1995.Google Scholar
  22. 22.
    R. HOSEMANN, J. Polym. Sci.: Part C, 20 (1967) 1.Google Scholar
  23. 23.
    Y. C. JEAN, H. SHI, G. H. DAI, C. M. HUNG, J. LIU, in: Ref. 20, Positron Annihilation, Proc. of the 10th Intern. Conf., Y.-J. HE, B.-S. CAO, Y. C. JEAN (Eds), Mat. Sci. Forum, 175–178, Trans. Tech. Publ., 1995, p. 691.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • G. Dlubek
    • 1
    • 2
  • A. P. Clarke
    • 2
  • H. M. Fretwell
    • 2
  • S. B. Dugdale
    • 2
  • M. A. Alam
    • 2
  1. 1.ITA Institut für innovative Technologien GmbH KöthenHalle/S.(Germany)
  2. 2.H.H. Wills Physics LaboratoryUniversity of BristolBristol(UK)

Personalised recommendations