Radiation oxidation of phenol in the presence of petrochemical wastewater components

  • F. Macášek
  • V. Mikulaj
  • P. Rajec
  • R. Čech
  • L. Mátel
  • R. Kopunec
  • J. Kuruc
  • A. Švec


Radiolytical decomposition of phenol was investigated at60Co gamma irradiation (1–2 Gy·s−1, ≤10 kGy) of pre- and continuously aerated aqueous solutions at concentrations of phenol 1–100 mg· ·dm−3 and in the presence of sodium hydroxide, sulphuric acid, sodium and ferrous sulphate, formaldehyde, 2-propanol,n-hexane, xylene, benzene, and commercial gasoline. From the decomposition rate at doses 50–400 Gy, a phenomenological model of linear relation between the dose acquired for 37% decomposition (D37), initial concentration (g·m−3) of phenol (p0) and of an admixture (s0) was confirmed in the formD37=52ftr(p0+feqs0), wheref's are constants which can be attributed to the relative transformation resistance of phenol towards the OH radicals in given matrix (ftr, for pure waterftr=1) and relative acceptor capacity of competing substrate (feq). In real wastewaters, the efficient decrease of phenols content may be substantially lower than that in model solutions, obviously due to radiation oxidation of aromates, as proved by irradiation of aqueous solutions of benzene. Technical and economical feasibility of the process is discussed.


Phenol Decomposition Rate Phenol Content Sulphuric Acid Sodium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CH. J. TOUHILL, E. C. MARTIN, M. P. FUJIHARA, D. E. OLLSEN, J. E. STEIN, G. MCDONELL, J. Water Pollut. Contr. Fed., 41 (1969) R44.Google Scholar
  2. 2.
    M. WASHINO, Radiat. Phys. Chem., 18 (1981) 383.Google Scholar
  3. 3.
    E. P. PETRYAEV, V. I. VLASOV, I. A. SAVUSHKIN, Radiatsionnokhimicheskaya ochistka stochnykh vod i vybrosnykh gazov, Izd. Universitetskore, Minsk, 1985.Google Scholar
  4. 4.
    J. F. SWINWOOD, T. D. WAITE, P. KRUGER, S. M. RAO, JAEA Bulletin, 36, (1994) No. 1, 11.Google Scholar
  5. 5.
    S. A. BRUSENTSEVA, P. I. DOLIN, V. N. SHUBIN, A. G. PRIBUSH, Khim. Vys. Energ., 4 (1970) 88.Google Scholar
  6. 6.
    S. A. BRUSENTSEVA, A. G. PRIBUSH, V. N. SHUBIN, P. I. DOLIN, Khim. Vys. Energ., 4 (1971) 83.Google Scholar
  7. 7.
    L. M. COFFMAN, D. D. WOODBRIDGE, Bull. Environ. Contam. Toxicol., 11 (1974) 461.PubMedGoogle Scholar
  8. 8.
    O. I. MICIC, M. T. NENADOVIC, V. M. MARKOVIC, in: Radiation for a Clean Environment, Proc. Intern. Symp. 1975, IAEA Vienna, 1975, p. 233.Google Scholar
  9. 9.
    E. A. PODZOROVA, V. P. PLOTNIKOVA, N. V. BYCHKOV, A. I. KASPEROVICH, Khim. Vys. Energ., 10 (1976) 423.Google Scholar
  10. 10.
    E. A. PODZOROVA, V. P. PLOTNIKOVA, N. V. BYCHKOV, A. I. KASPEROVICH, Khim. Prom-st (Moscow), No. 1 (1979) 19.Google Scholar
  11. 11.
    K. TAKIMOTO, K. SATO, S. TSUDA, Bunseki Kagaku, 27 (1978) 514.Google Scholar
  12. 12.
    S. HASHIMOTO, T. MIYATA, M. WASHINO, W. KAWAKAMI, Environ. Sci. Technol., 13 (1979) 71.Google Scholar
  13. 13.
    V. MIKULAJ, Z. KIRÁLYOVÁ, Ľ. MÁTEL, Acta F.R.N. Univ. Comen. Form. Prot. Nat., No 5 (1979) 57.Google Scholar
  14. 14.
    L. V. NEMIROVSKAYA, N. A. VYSOTSKAYA, G. P. ALEEVA, L. G. SHEVCHUK, V. N. ALEKSANDROV, Khim. Tekhnolog. (Kiev), No. 6 (1979) 50.Google Scholar
  15. 15.
    N. A. VYSOTSKAYA, L. G. SHEVCHUK, G. P. ALEEVA, Khim. Tekhnol. (Kiev), No. 1 (1980) 53.Google Scholar
  16. 16.
    N. GETOFF, W. LUTZ, Radiat. Phys. Chem., 25 (1985) 21.Google Scholar
  17. 17.
    N. GETOFF, Appl. Radiation Isotopes, 37 (1986) 1103.Google Scholar
  18. 18.
    F. MACÁŠEK, A. ŠVEC, Acta F.R.N. Univ. Comen. Form. Prot. Nat., No 5 (1979) 79.Google Scholar
  19. 19.
    L. A. KULSKII, I. T. GORONOVSKII, A. M. KOGANOVSKII, M. A. SHEVCHENKO, Spravochnik po svoistvam, metodam analiza i ochistke vody, Vol. 1, Naukova Dumka, Kiev, 1980, p. 464.Google Scholar
  20. 20.
    L. T. BUGAENKO, S. A. KABAKCHI, Metod statsionarnykh kontsentratsii v radiatsionnoi khimii, Moscow State University, Moscow, 1971.Google Scholar
  21. 21.
    O. NAVRÁTIL, J. HÁLA, R. KOPUNEC, F. MACÁŠEK, V. MIKULAJ, L. LEŠETICKÝ, Nuclear Chemistry, Ellis Horwood, Chichester, 1992, p. 154.Google Scholar
  22. 22.
    D. I. METELITSA, YE. T. DENISOV, Neftekhimiya, 7 (1967) 65.Google Scholar
  23. 23.
    D. I. METELITSA, YE. T. DENISOV, Kinetika i Kataliz, 9 (1968) 733.Google Scholar
  24. 24.
    E. J. LAND, M. EBERT, Trans. Faraday Soc., 63 (1967) 1181.Google Scholar
  25. 25.
    E. J. FENDLER, J. H. FENDLER, Prog. Phys. Org. Chem., 7 (1970) 229.Google Scholar
  26. 26.
    A. KH. BREGER, B. I. VAINSHTEIN, N. P. SYRKUS, V. A. GOLDIN, L. V. CHEPEL, Osnovy radiatsionno-khimicheskogo apparato-stroeniya, Atomizdat, Moscow, 1967.Google Scholar
  27. 27.
    J. LESSEL, H. MÄTSCH, E. HENNING, A. SUESS, A. ROSOPULO, G. SCHURMAN, in: Radiation for a Clean Environment, Proc. Int. Symp., STI/PUB/402, IAEA, Vienna, 1975, p. 447.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • F. Macášek
    • 1
  • V. Mikulaj
    • 1
  • P. Rajec
    • 1
  • R. Čech
    • 2
  • L. Mátel
    • 1
  • R. Kopunec
    • 1
  • J. Kuruc
    • 1
  • A. Švec
    • 1
  1. 1.Department of Nuclear ChemistryFaculty of Science, Comenius UniversityBratislavaSlovakia
  2. 2.Modra Planeta Ltd.BratislavaSlovakia

Personalised recommendations