Journal of Radioanalytical and Nuclear Chemistry

, Volume 150, Issue 2, pp 435–444 | Cite as

Precision of a plutonium analytical method using solvent extraction and spectrophotometry

  • P. G. MendozaJr.
  • D. D. Jackson
  • T. M. Niemczyk


We investigated the plutonium assay method that uses the plutonyl trinitrate tetrapropyl-ammonium ion-pair solvent extraction with spectrophotometry of the extract as a candidate method capable of providing robustness and precision. To identify and assess the effect of factors on the precision, we looked at sampling techniques, silver oxide oxidation conditions extraction time, extract stability, and temperature dependence of the extract analytical peak height and position. We obtained a precision of 0.12%.


Oxidation Inorganic Chemistry Oxidation Condition Solvent Extraction Peak Height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. RAMANIAH, P. R. NATARAJAN, P. VENKATARAMANA, Radiochim. Acta, 22 (1975) 199.Google Scholar
  2. 2.
    J. KRTIL, V. KUVIK, J. Radioanal. Chem., 121 (1988) 365.Google Scholar
  3. 3.
    D. J. SAVAGE, J. B. GUNN, J. L. DRUMMOND, The Effects of Anions on Plutonium 6 Spectrophotometry, UK Atomic Energy Authority ND-R-1258 (D), February 1986.Google Scholar
  4. 4.
    P. CAUCHETIER, Analusis, 8 (1980) 336.Google Scholar
  5. 5.
    G. PHILLIPS, Analyst, 83 (1958) 75.CrossRefGoogle Scholar
  6. 6.
    W. J. MAECK, M. E. KUSSY, G. L. BOOMAN, J. E. REIN, Anal. Chem., 33 (1961) 998.CrossRefGoogle Scholar
  7. 7.
    D. D. JACKSON, D. J. HODGKINS, R. M. HOLLEN, J. E. REIN, Automated Spectrophotometer for Plutonium and Uranium Determination, Loss Alamos Scientific Laboratory Report LA-6091, 1976.Google Scholar
  8. 8.
    P. G. MENDOZA, Jr., T. M. NIEMCZYK, D. D. JACKSON, J. Radioanal. Nucl. Chem., 141 (1990) 357.CrossRefGoogle Scholar
  9. 9.
    R. N. HAMMER, J. KLEINBERG, Inorganic Synthesis, 4 (1953) 12.Google Scholar
  10. 10.
    D. P. SHOEMAKER, C. W. GARLAND, J. I. STEINFELD, Chapter 2 of Experiments in Physical Chemistry, 3rd ed., McGraw-Hill, New York, 1974.Google Scholar
  11. 11.
    D. G. MITCHELL, J. S. GARDEN, Talanta, 29 (1982) 921.CrossRefGoogle Scholar
  12. 12.
    J. C. MILLER, J. N. MILLER, Chapter 7 of Statistics for Analytical Chemistry, 2nd ed., Ellis Horwood Limited, Chichester, West Sussex, England, 1988.Google Scholar
  13. 13.
    C. P. LLOYD, Anal. Chim. Acta, 43 (1968) 95.CrossRefGoogle Scholar
  14. 14.
    S. N. DEMING, S. L. MORGAN, Chapter 9 of Experimental Design: A Chemometric Approach, Elsevier Science Publishers B. V., New York, 1987.Google Scholar
  15. 15.
    N. R. DRAPER, H. SMITH, Chapter 3 of Applied Regression Analysis, 2nd ed., John Wiley and Sons, New York, 1981.Google Scholar
  16. 16.
    S. D. CHRISTIAN, E. H. LANE, F. GARLAND, J. Chem. Ed., 51 (1974) 475.Google Scholar
  17. 17.
    J. MANDEL, Statistical Methods in Analytical Chemistry, in: Treatise on Analytical Chemistry, Part III, Vol. 3, I. M. KOLTHOFF, P. J. ELVING, F. STROSS (Eds), John Wiley and Sons, New York, 1976.Google Scholar
  18. 18.
    P. M. RINARD, A. GOLDMAN, A Curve Fitting Package for Personal Computers, Los Alamos National Laboratory Report LA-11082-MS, Rev. 1, 1988.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • P. G. MendozaJr.
    • 1
  • D. D. Jackson
    • 1
  • T. M. Niemczyk
    • 2
  1. 1.Chemical and Laser Sciences DivisionLos Alamos National LaboratoryLos Alamos(USA)
  2. 2.Department of ChemistryUniversity of New MexicoAlbuquerque(USA)

Personalised recommendations