Journal of Chemical Ecology

, Volume 21, Issue 10, pp 1549–1570 | Cite as

Aggregation pheromone of coconut rhinoceros beetle,Oryctes rhinoceros (L.) (coleoptera: Scarabaeidae)

  • Rebecca H. Hallett
  • Alice L. Perez
  • Gerhard Gries
  • Regine Gries
  • Harold D. PierceJr.
  • Junming Yue
  • A. Cameron Oehlschlager
  • Lilliana M. Gonzalez
  • John H. Borden
Article

Abstract

Male coconut rhinoceros beetles,Oryctes rhinoceros (L.), produce three sex-specific compounds, ethyl 4-methyloctanoate, ethyl 4-methylheptanoate, and 4-methyloctanoic acid, the first of which is an aggregation pheromone. Synthesis of these compounds involving conjugate addition of organocuprates to ethyl acrylate is reported. In field trapping experiments, (4S)-ethyl 4-methyloctanoate and the racemic mixture were equally attractive and 10 times more effective in attracting beetles than ethyl chrysanthemumate, a previously recommended attractant. Ethyl 4-methylheptanoate was as attractive as ethyl chrysanthemumate and more attractive than 4-methyloctanoic acid, but further studies are required before it can be classed as an aggregation pheromone. Compared to ethyl 4-methyloctanoate alone, combinations of the three male-produced compounds did not increase attraction, whereas addition of freshly rotting oil palm fruit bunches to pheromone-baited traps significantly enhanced attraction. With increasing dose, captures ofO. rhinoceros increased, but doses of 6, 9, and 18 mg/day were competitive with 30 mg/day lures. Newly designed vane traps were more effective in capturing beetles than were barrier or pitfall traps. Results of this study indicate that there is potential for using ethyl 4-methyloctanoate in operational programs to controlO. rhinoceros in oil palm plantations.

Key Words

Coleoptera Scarabaeidae Oryctes rhinoceros coconut rhinoceros beetle aggregation pheromone pheromone chirality ethyl 4-methyloctanoate ethyl 4-methylheptanoate 4-methyloctanoic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arn, H., Städler, E., andRauscher, S. 1975. The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones.Z. Naturforsch. 30c:722–725.Google Scholar
  2. Barber, I.A., McGovern, T.P., Beroza, M., Hoyt, C.P., andWalker, A. 1971. Attractant for the coconut rhinoceros beetle.J. Econ. Entomol. 64:1041–1044.Google Scholar
  3. Bedford, G.O. 1980. Biology, ecology and control of palm rhinoceros beetles.Annu. Rev. Entomol. 25:309–339.CrossRefGoogle Scholar
  4. Bedford, G.O. 1986. Biological control of the rhinoceros beetle (Oryctes rhinoceros) in the South Pacific by baculovirus.Agric. Ecosyst. Environ. 15:141–147.CrossRefGoogle Scholar
  5. Burger, B.V., Munro, Z., Roth, M., Spies, H.S.C., Truter, V., Tribe, G.D., andCrewe, R.M. 1983. Composition of the heterogeneous sex attracting secretion of the dung beetle,Kheper lamarcki.Z. Naturforsch. 38c:848–855.Google Scholar
  6. Cason, J., Adams, C.E., Bennett, L.L., andRegister, U.D. 1944. Branched-chain fatty acids. III. New method of introducing the branching methyl group. Synthesis of 15-methylocta-decanoic acid and 14-methyltetracosanic acid.J. Am. Chem. Soc. 65:1764–1767.CrossRefGoogle Scholar
  7. Corey, E.J., andBoaz, N.W. 1985. The reaction of combined organocuprate-chlorotrimethylsilane reagents with conjugated carbonyl compounds.Tetrahedron Lett. 1985:6019–6022.CrossRefGoogle Scholar
  8. Fouquet, G., andSchlosser, M. 1974. Improved carbon-carbon linking by controlled copper catalysis.Angew. Chem. Int. Ed. 13:82–83.CrossRefGoogle Scholar
  9. Furniss, B.S., Hannaford, A.J., Smith, P.W.G., andTatchell, A.R. 1989. Vogel's Textbook of Practical Organic Chemistry, 5th ed., Longman, Essex.Google Scholar
  10. Giblin-Davis, R.M., Weissling, T.J., Oehlschlager, A.C., andGonzalez, L.M. 1994. Field response ofRhynchophorus cruentatus (Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles.Fla. Entomol. 77:164–177.Google Scholar
  11. Gressit, J.L. 1953. The coconut rhinoceros beetle (Oryctes rhinoceros) with particular reference to the Palau Islands. Bernice P. Bishop Museum, Honolulu, Hawaii, Bulletin 212.Google Scholar
  12. Gries, G., Gries, R., Perez, A.L., Oehlschlager, A.C., Gonzales, L.M., Pierce, H.D., Jr., Zebeyou, M., andKouame, B. 1994a. Aggregation pheromone of the African rhinoceros beetle,Oryctes monoceros (Olivier) (Coleoptera: Scarabaeidae).Z. Naturforsch. 49c:363–366.Google Scholar
  13. Gries, G., Gries, R., Perez, A.L., Gonzales, L.M., Pierce, H.D., Jr., Oehlschlager, A.C., Rhainds, M., Zebeyou, M., andKouame, B. 1994b. Ethyl propionate: Synergistic kairomone for African palm weevil,Rhynchophorus phoenicis L. (Coleoptera: Curculionidae).J. Chem. Ecol. 20:889–897.CrossRefGoogle Scholar
  14. Hallett, R.H., Gries, G., Gries, R., Borden, J.H., Czyzewska, E., Oehlschlager, A.C., Pierce, H.D., Jr., Angerilli, N.P.D., andRauf, A. 1993. Aggregation pheromones of two Asian palm weevils,Rhynchophorus ferrugineus andR. vulneratus.Naturwissenschaften 80:328–331.CrossRefGoogle Scholar
  15. Hanessian, S., Franco, J., andLarouche, B. 1990. The psychobiological basis of heuristic synthesis planning—man, machine and the chiron approach.Pure Appl. Chem. 62:1887–1910.Google Scholar
  16. Hasegawa, M., Leal, W.S., andSawada, M. 1993. Field evaluation ofAnomala schonfeldti Ohaus (Coleoptera: Scarabaeidae) synthetic sex pheromone.J. Chem. Ecol. 19:1453–1459.CrossRefGoogle Scholar
  17. Henzell, R.F., andLowe, M.D. 1970. Sex attractant of the grass grub beetle.Science 168:1005–1006.PubMedGoogle Scholar
  18. Ho, T.-L. 1992. Enantioselective synthesis. Natural products from chiral terpenes. Wiley, New York. pp. 5–16.Google Scholar
  19. Ho, C.T., andToh, P.Y. 1982. Some investigations into the control ofOryctes rhinoceros L. in coconut plantings.Planter 58:492–506.Google Scholar
  20. Jacob, T.K., andBhumannavar, B.S. 1991. The coconut rhinoceros beetleOryctes rhinoceros L.—its incidence and extent of damage in the Andaman and Nicobar Islands (India).Trop. Pest Manage. 37:80–84.CrossRefGoogle Scholar
  21. Leal, W.S. 1991. (R,Z)-5-(−)-(Oct-1-enyl)oxacyclopentan-2-one, the sex pheromone of the scarab beetleAnomala cuprea.Naturwissenschaften 78:521–523.CrossRefGoogle Scholar
  22. Leal, W.S. 1993. (Z)- and (E)-Tetradec-7-en-2-one, a new type of sex pheromone from Oriental beetle.Naturwissenschaften 80:86–87.CrossRefGoogle Scholar
  23. Leal, W.S., Sawada, M., andHasegawa, M. 1993a. The scarab beetleAnomala cuprea utilizes the sex pheromone ofPopillia japonica as a minor component.J. Chem. Ecol. 19:1303–1313.CrossRefGoogle Scholar
  24. Leal, W.L., Sawada, M., andHasegawa, M. 1993b. The scarab beetleAnomala daimiana utilizes a blend of two otherAnomala spp. sex pheromones.Naturwissenschaften 80:181–183.CrossRefGoogle Scholar
  25. Leal, W.S., Sawada, M., Matsuyama, S., Kuwahara, Y., andHasegawa, M. 1993c. Unusual periodicity of sex pheromone production in the large black chaferHolotrichia parallela.J. Chem. Ecol. 19:1381–1391.CrossRefGoogle Scholar
  26. Leal, W.S., Hasegawa, M., Sawada, M., Ono, M., andUeda, Y. 1994a. Identification and field evaluation ofAnomala octiescostata (Coleoptera: Scarabaeidae) sex pheromone.J. Chem. Ecol. 20:1643–1655.CrossRefGoogle Scholar
  27. Leal, W.S., Kawamura, F., andOno, M. 1994b. The scarab beetleAnomala albopilosa sakishimana utilizes the same sex pheromone blend as a closely related and geographically isolated species,Anomala cuprea.J. Chem. Ecol. 20:1667–1676.CrossRefGoogle Scholar
  28. Leal, W.S., Hasegawa, M., Sawada, M., andOno, M. 1994c. Sex pheromone of Oriental beetle,Exomala orientalis: Identification and field evaluation.J. Chem. Ecol. 20:1705–1718.CrossRefGoogle Scholar
  29. Leal, W.S., Ono, M., Hasegawa, M., andSawada, M. 1994d. Kairomone from dandelion,Taraxacum officinale, attractant for scarab beetleAnomala octiescostata.J. Chem. Ecol. 20:1697–1704.CrossRefGoogle Scholar
  30. Liau, S.S., andAhmad, A. 1991. The control ofOryctes rhinoceros by clean clearing and its effect on early yield in palm-to-palm replants. Proceedings, PORIM International Palm Oil Congress, September 9–14, 1991. Kuala Lumpur, Malaysia.Google Scholar
  31. Liau, S.S., andAhmad, A. 1993. Simulated defoliation and crop loss in young oil palm. Proceedings, PORIM International Palm Oil Congress, September 20–25, 1993, Kuala Lumpur, Malaysia.Google Scholar
  32. Maddison, P.A., Beroza, M., andMcGovern, T.P. 1973. Ethyl chrysanthemumate as an attractant for the coconut rhinoceros beetle.J. Econ. Entomol. 66:591–592.Google Scholar
  33. Matsuzawa, S., Horiguchi, Y., Nakamura, E., andKuwajima, I. 1989. Chlorosilane-accelerated conjugate addition of catalytic and stoichiometric organocopper reagents.Tetrahedron 45:349–362.CrossRefGoogle Scholar
  34. McCreary, M.D., Lewis, D.W., Wernick, D.L., andWhitesides, G.M. 1974. The determination of enantiomeric purity.J. Am. Chem. Soc. 96:1038–1054.CrossRefGoogle Scholar
  35. Minitab. 1989. Release 7.1, Standard Version, Minitab Inc.Google Scholar
  36. Mori, K. 1992. The synthesis of insect pheromones, 1979–1989,in J. ApSimon (ed.). The Total Synthesis of Natural Products, Vol. 9. Wiley, New York.Google Scholar
  37. Mori, K., andHarashima, S. 1993a. Synthesis of (2E,4E,6R,10S)-4,6,10-trimethyl-2,4-tridecadien-7-one—the major component of the sex pheromone of the maritime pine scale (Matsucoccus feytaudi)—and its three stereoisomers.Liebigs Ann. Chem. 1993:391–401.Google Scholar
  38. Mori, K., andHarashima, S. 1939b. Synthesis of (2E,4E,6R,10R)-4,6,10-12-tetramethyl1-2,4-tridecadien-7-one (matsuone)—the primary component of the sex pheromone of threeMatsucoccus pine bast scales—and its antipode.Liebigs Ann. Chem. 1993:993–995.Google Scholar
  39. Mori, K., andMurata, N. 1994. Synthesis of all the eight stereoisomers of methyl 2,6,10-trimethyltridecanoate, the male-produced pheromone of stink bugs,Eustichus heros andE. obscurus.Leibigs Ann. Chem. 1994:1153–1160.Google Scholar
  40. Mori, K., Harada, H., Zagatti, P., Cork, A., andHall, D.R. 1991. Synthesis and biological activity of four stereoisomers of 6,10,14-trimethyl-2-pentadecanol, the female-produced sex pheromone of rice moth (Corcyra cephalonica).Leibigs Ann. Chem. 1991:259–267.Google Scholar
  41. Mrowca, J.J. 1981. Acids or esters from unsaturated compounds.Chem. Abst. 95:P97089h.Google Scholar
  42. Oehlschlager, A.C., Pierce, A.M., Pierce, H.D., Jr., andBorden, J.H. 1988. Chemical communication in cucujid grain beetles.J. Chem. Ecol. 14:2071–2098.CrossRefGoogle Scholar
  43. Oehlschlager, A.C., Pierce, H.D., Jr., Morgan, B., Wimalaratne, P.D.C., Slessor, K.N., King, G.G.S., Gries, G., Gries, R., Borden, J.H., Jiron, L.J., Chinchilla, C.M., andMexzon, R.G. 1992. Chirality and field activity of rhynchophorol, the aggregation pheromone of the American palm weevil.Naturwissenschaften 79:134–135.CrossRefGoogle Scholar
  44. Paquette, L.A., Wang, T.-Z., andPinard, E. 1995. Total synthesis of natural (+)-acetoxycrenulide.J. Am. Chem. Soc. 117:1455–1456.CrossRefGoogle Scholar
  45. Perlmutter, P. 1992. Conjugate Addition Reactions in Organic Synthesis. Pergamon Press, Oxford.Google Scholar
  46. Pirkle, W.H., andSikkenga, D.L. 1977. The use of chiral solvating agents for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones. Consequences of three-point interaction.J. Org. Chem. 42:1370–1374.CrossRefGoogle Scholar
  47. Pikle, W.H., Sikkenga, D.L., andPaulin, M.S. 1977. Nuclear magnetic resonance determinations of enantiomeric composition and absolute configuration of γ-lactones using chiral 2,2,2-trifluoro-1-(9-anthryl)ethanol.J. Org. Chem. 42:384–387.CrossRefGoogle Scholar
  48. Sonnet, P.E., andBaillargeon, M.W. 1989. Synthesis and lipase catalyzed hydrolysis of thiolesters of 2-, 3-, and 4-methyloctanoic acids.Lipids 24:434–437.Google Scholar
  49. Sonnet, P.E., andGazzillo, J. 1990. Asymmetric synthesis of 2-, 3-, and 4-methyloctanoic acids.Org. Prep. Proc. Int. 22:203–208.CrossRefGoogle Scholar
  50. Still, W.C., Kahn, M., andMitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution.J. Org. Chem. 43:2923–2925.CrossRefGoogle Scholar
  51. Stork, G., andNakamura, E. 1983. A simplified total synthesis of cytochalasin via intramolecular Diels-Alder reaction.J. Am. Chem. Soc. 105:5510–5512.CrossRefGoogle Scholar
  52. Tajudin, M.H., Teoh, C.H., Aribi, K., andAli, M. 1993. Zero-burning—an environmentally friendly replanting technique. Proceedings, PORIM International Palm Oil Congress, September 20–25, 1993, Kuala Lumpur, Malaysia.Google Scholar
  53. Tamaki, Y., Sugie, H., andNoguchi, H. 1985. Methyl (Z)-5-tetradecenoate: sex-attractant pheromone of the soybean beetle,Anomala rufocuprea Motschulsky (Coleoptera: Scarabaeidae).Appl. Entomol. Zool. 20:359–361.Google Scholar
  54. Tumlinson, J.H., Klein, M.G., Doolittle, R.E., Ladd, T.L., andProveaux, A.T. 1977. Identification of the female Japanese bettle sex pheromone: Inhibition of male response by an enantiomer.Science 197:789–792.PubMedGoogle Scholar
  55. Valentine, D. Jr., Chan, K.K., Scott, C.G., Johnson, K.K., Toth, K., andSaucy, G. 1976. Direct determination ofR/S enantiomers ratios of citronellic acid and related substances by nuclear magnetic resonance spectroscopy and high pressure liquid chromatography.J. Org. Chem. 41:62–65.CrossRefGoogle Scholar
  56. Vander Meer, R.K., Ghatak, U.R., Alam, S.K., andChakraborti, P.C. 1979. (±)-Des-N-morphinan: A unique bridged hydrocarbon attractant for the rhinoceros beetle,Oryctes rhinoceros, and development of an olfactometer.Environ. Entomol. 8:6–10.Google Scholar
  57. Vasi, I.G., andDesai, K.R. 1973. Optical activity of higher homologous acids prepared from (S)-(+)-2-methylbutyric acid by Arndt-Eistert synthesis.Chem. Abst. 78:57621t.Google Scholar
  58. Weinges, K., Ziegler, H.J., Maurer, W., andSchmidbauer, S.B. 1993. Zwei einfache EPC-synthesen mit chemischem beweis der absoluten konfiguration von (+)-mitsugashiwa-lacton aus (S)-(-)-citronellol und aucubin.Liebigs Ann. Chem. 1993:1029–1031.Google Scholar
  59. Wood, B.J. 1968. Studies on the effect of ground vegetation on infestations ofOryctes rhinoceros (L.) (Col., Dynastidae) in young oil palm replantings in Malaysia.Bull. Entomol. Res. 59:85–96.CrossRefGoogle Scholar
  60. Young, E.C. 1986. The Rhinoceros Beetle Project: History and review of the research programme.Agric. Ecosyst. Environ. 15:149–166.CrossRefGoogle Scholar
  61. Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  62. Zelazny, B. 1979. Loss in coconut yield due toOryctes rhinoceros damage.FAO Plant Prot. Bull. 27(3):65–70.Google Scholar
  63. Zelazny, B., andAlfiler, A.R. 1986.Oryctes rhinoceros (Coleoptera: Scarabaeidae) larval abundance and mortality factors in the Philippines.Environ. Entomol. 15:84–87.Google Scholar
  64. Zelazny, B., andAlfiler, A.R. 1987. Ecological methods for adult populations ofOryctes rhinoceros (Coleoptera: Scarabaeidae).Ecol. Entomol. 12:227–238.Google Scholar
  65. Zelazny, B., andAlfiler, A.R. 1991. Ecology of baculovirus-infected and healthy adults ofOryctes rhinoceros (Coleoptera: Scarabaeidae) on coconut palms in the Philippines.Ecol. Entomol. 16:253–259.Google Scholar
  66. Zhang, A., Facundo, H.T., Robbins, P.S., Linn, C.E., Jr., Hanula, J.L., Villani, M.G., andRoelofs, W.L. 1994. Identification and synthesis of female sex pheromone of Oriental beetle,Anomala orientalis (Coleoptera: Scarabaeidae).J. Chem. Ecol. 20:2415–2427.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Rebecca H. Hallett
    • 1
  • Alice L. Perez
    • 2
  • Gerhard Gries
    • 1
  • Regine Gries
    • 1
  • Harold D. PierceJr.
    • 2
  • Junming Yue
    • 2
  • A. Cameron Oehlschlager
    • 2
  • Lilliana M. Gonzalez
    • 3
  • John H. Borden
    • 1
  1. 1.Centre for Pest Management Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  3. 3.Chem Tica InternationalSan JoseCosta Rica

Personalised recommendations