Skip to main content
Log in

Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Oxidative responses of plants to pathogens and other environmental stresses have received considerable recent attention. We propose that an oxidative response also occurs following attack by herbivores. Our data strongly indicate a shift in the oxidative status of soybean following herbivory by the insectHelicoverpa zea. Herbivory caused significant increases in lipid peroxidation and ·OH radical formation. The activity of several oxidative enzymes including lipoxygenases, peroxidase, diamine oxidase, ascorbate oxidase, and NADH oxidase I increased after herbivory on soybean. The enhanced production of phenolic compounds is indicated by an increase in the activity of phenylalanine ammonia lyase in wounded tissues. On the other hand, the level of soybean foliar antioxidants such as ascorbic acid, total carotenoids, nonprotein thiols, and catalase decreased significantly following herbivory. These results implicate primary compounds (e.g., ascorbic acid, proteins), secondary metabolites (e.g., phenolics), and reactive oxygen species (e.g., hydroxyl radical, hydrogen peroxide) as multiple components of induced resistance. The oxidative changes in the host plant correspond with increased oxidative damage in the midgut of insects feeding on previously wounded plants. Decreases in nonprotein thiols and reduced ascorbic acid occurred in midgut epithelial tissue from insects feeding on wounded plants compared to the insects on control plants. In contrast, midgut hydroperoxides and dehydroascorbic acid concentrations were greater in insects on wounded plants compared to their counterparts on control plants. We conclude that oxidative responses in soybean may have both positive and negative effects upon the host plant: a decrease in herbivory and an increase in oxidative damage to the plant. The salient benefit to the plant, in terms of insect resistance, is the relative balance between these opposing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, A., Farkas, T., Somlyai, G., Hevest, M., andKiraly, Z. 1989. Consequences of O2 generation during a bacterially induced hypersensitive reaction in tobacco: Deterioration of membrane lipids.Physiol. Mol. Plant Pathol. 34:13–26.

    Article  CAS  Google Scholar 

  • Aebi, H. 1984. Catalase in vitro.Methods Enzymol. 105:121–126.

    PubMed  CAS  Google Scholar 

  • Ahmad, S. 1992. Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects.Biochem. Syst. Ecol. 20:269–296.

    Article  CAS  Google Scholar 

  • Anderson, W.L., andWetlaufer, D.B. 1975. A new method for disulfide analysis of peptides.Anal. Biochem. 67:493–502.

    Article  PubMed  CAS  Google Scholar 

  • Angelini, R., andFederico, R. 1989. Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall.J. Plant Physiol. 135:212–217.

    CAS  Google Scholar 

  • Angelini, R., Manes, F., andFederico, R. 1990. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems.Planta 182:89–96.

    Article  CAS  Google Scholar 

  • Apostol, I., Heinstein, P.F., andLow, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells.Plant Physiol. 90:109–116.

    PubMed  CAS  Google Scholar 

  • Appel, H. 1993. Phenolics in ecological interactions: the importance of oxidation.J. Chem. Ecol. 19:1521–1552.

    Article  CAS  Google Scholar 

  • Argandona, V.H. 1994. Effect of aphid infestation on enzyme activities in barley and wheat.Phytochemistry 35:313–315.

    Article  CAS  Google Scholar 

  • Aucoin, R.R., Fields, P., Lewis, M.A., Philogene, B.J.R., andArnason, J.T. 1990. The protective effect of antioxidants to a phototoxin-sensitive insect herbivore,Manduca sexta.J. Chem. Ecol. 16:2913–2924.

    Article  CAS  Google Scholar 

  • Aver'yanov, A.A., Lapikova, V.P., andDjawakhia, V.G. 1993. Active oxygen mediates heat resistance of rice plant to blast disease.Plant Sci. 92:27–34.

    Article  Google Scholar 

  • Babbs, C.F., Pham, J.A., andCoolbaugh, R.C. 1989. Lethal hydroxyl radical production in paraquat-treated plants.Plant Physiol. 90:1267–1270.

    PubMed  CAS  Google Scholar 

  • Badiani, M., Schenone, G., Paolacci, A.R., andFumagalli, I. 1993. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves as affected by the presence of ambient air pollutants.Plant Cell Physiol. 34:271–279.

    CAS  Google Scholar 

  • Barbehenn, R.V., andMartin, M.M. 1994. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation.J. Chem. Ecol. 20:1985–2001.

    Article  CAS  Google Scholar 

  • Bi, J.L., Felton, G.W., andMueller, A.J. 1994. Induced resistance in soybean toHelicoverpa zea: Role of plant protein quality.J. Chem. Ecol. 20:183–198.

    Article  CAS  Google Scholar 

  • Bradley, D.J., Kjellbom, P., andLamb, C.J. 1992. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein.Cell 70:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Brightman, A.O., Zhu, X.Z., andMorre, D.J. 1991. Activation of plasma membrane NADH oxidase activity by products of phospholipase A.Plant Physiol. 96:1314–1320.

    PubMed  CAS  Google Scholar 

  • Chamulitrat, W., Hughes, M.F., Eling, T.E., andMason, R.P. 1991. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase.Arch. Biochem. Biophys. 290:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., andKlessig, D.F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid.Science 262:1883–1886.

    PubMed  CAS  Google Scholar 

  • Chippendale, G.M. 1970. Metamorphic changes in fat body proteins of the southwestern corn borerDiatraea grandiosella.J. Insect Physiol. 16:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Creelman, R.A., Tierney, M.L., andMullet, J.E. 1992. Jasmonic acid and methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.Proc. Natl. Acad. Sci. U.S.A. 89:4938–4941.

    PubMed  CAS  Google Scholar 

  • Crow, J.P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C.D., Radi, R., Koppenol, W.H., andBeckman, J.S. 1994. On the pH-dependent yield of hydroxyl radical products from peroxynitrite.Free Radic. Biol. Med. 16:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Dadd, R.H. 1973. Insect nutrition: Current developments and metabolic implications.Annu. Rev. Entomol. 18:381–420.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D., Merida, J., Legendre, L., Low, P.S., andHeinstein, P. 1993. Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells.Phytochemistry 32:606–611.

    Article  Google Scholar 

  • Degousee, N., Triantaphylides, C., andMontillet, J. 1994. Involvement of oxidative processes in signaling mechanisms leading to the activation of glyceollin synthesis in soybean (Glycine max).Plant Physiol. 104:945–952.

    PubMed  CAS  Google Scholar 

  • Devlin, W.S., andGustine, D.L. 1992. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction.Plant Physiol. 100:1189–1195.

    PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., andMatowe, W. 1981. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation.J. Exp. Bot. 32:79–91.

    CAS  Google Scholar 

  • Dillwith, J.W., Berberet, R.C., Bergman, D.K., Neese, P.A., Edwards, R.M., andMcNew, R.W. 1991. Plant biochemistry and aphid populations: studies on the spotted alfalfa aphid,Therioaphis maculata.Arch. Insect Biochem. Physiol. 17:235–252.

    Article  CAS  Google Scholar 

  • Doke, N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race ofPhytophtora infestans and to hyphal wall components.Physiol. Plant Pathol. 23:345–357.

    Article  CAS  Google Scholar 

  • Doke, N., andOhashi, Y. 1988. Involvement of an O2 generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus.Physiol. Mol. Plant Pathol. 32:163–175.

    CAS  Google Scholar 

  • Doke, N., Miura, Y., Chai, H.B., andKawakita, K. 1991. Involvement of active oxygen in induction of plant defense response against infection and injury, pp. 84–96,in E. Pell, and K. Steffen (eds.). Active Oxygen/Oxidative Stress and Metabolism. American Society of Plant Physiologist, Rockville, Maryland.

    Google Scholar 

  • Duffey, S.S., andFelton, G.W. 1991. Enzymatic antinutritive defenses of tomato plants against insects, pp. 167–197,in P.A. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Enyedi, A.J., Yalpani, N., Silverman, P., andRaskin, I. 1992. Signal molecules in systemic plant resistance to pathogen and pest.Cell 70:879–886.

    Article  PubMed  CAS  Google Scholar 

  • Espelie, K.E., andKolattukudy, P.E. 1985. Purification and characterization of an abscisic acid-induced anionic peroxidase associated with suberization in potato (Solanum tuberosum).Arch. Biochem. Biophys. 240:539–545.

    Article  PubMed  CAS  Google Scholar 

  • Espelie, K.E., Francischi, V.R., andKolattukudy, P.E. 1986. Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue.Plant Physiol. 81:487–492.

    PubMed  CAS  Google Scholar 

  • Farmer, E.E., Johnson, R.R., andRyan, C.A. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid.Plant Physiol. 98:995–1002.

    PubMed  CAS  Google Scholar 

  • Federico, R., andAngelini, R. 1986. Occurrence of diamine oxidase in the apoplast of pea epicotyls.Planta 167:300–303.

    Article  CAS  Google Scholar 

  • Federico, R., andAngelini, R. 1988. Distribution of polyamines and their related catabolic enzyme in epicotyls of etiolated and light-grown Leguminosae seedlings.Planta 173:317–321.

    Article  CAS  Google Scholar 

  • Federico, R., Angelini, R., Cesta, A., andPini, C. 1985. Determination of diamine oxidase in lentil seedlings by enzymatic activity and immunoreactivity.Plant Physiol. 79:62–64.

    PubMed  CAS  Google Scholar 

  • Fehr, W.R., Caviness, C.E., Burmood, D.T., andPennington, J.S. 1971. Stage of development description for soybeans,Glycine max (L.) Merrill.Crop Sci. 11:929–931.

    Article  Google Scholar 

  • Felton, G.W. 1995. Oxidative stress of vertebrates and invertebrates, pp. 356–434,in S. Ahmad (ed.). Oxidative Stress and Antioxidant Defenses in Biology. Chapman and Hall, New York.

    Google Scholar 

  • Felton, G.W., andSummers, C.B. 1993. Potential role of ascorbate oxidase as a plant defense protein against insect herbivory.J. Chem. Ecol. 19:1553–1568.

    Article  CAS  Google Scholar 

  • Felton, G.W. andSummers, C.B. 1995. Antioxidant defenses of insects.Arch. Insect Biochem. Physiol. 29:187–197.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G.W., Donato, K.K., Del Vecchio, R.J., andDuffey, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 15:2667–2694.

    Article  CAS  Google Scholar 

  • Felton, G.W., Donato, K.K., Broadway, R.M., andDuffey, S.S. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore,Spodoptera exigua.J. Insect Physiol. 38:277–285.

    Article  CAS  Google Scholar 

  • Felton, G.W., Summers, C.B., andMueller, A.J. 1994a. Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper.J. Chem. Ecol. 20:639–650.

    Article  CAS  Google Scholar 

  • Felton, G.W., Bi, J.L., Mueller, A.J., andDuffey, S.S. 1994b. Potential role of lipoxygenases in defense against insect herbivory.J. Chem. Ecol. 20:651–666.

    Article  CAS  Google Scholar 

  • Fitt, G.P. 1989. The ecology ofHeliothis species in relation to agroecosystems.Annu. Rev. Entomol. 34:17–52.

    Article  Google Scholar 

  • Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms.Annu. Rev. Plant Physiol. 37:165–186.

    Article  CAS  Google Scholar 

  • Fridovich, I. 1978. The biology of oxygen radicals.Science 201:875–880.

    PubMed  CAS  Google Scholar 

  • Goldberg, R., Le, T., andCatesson, A.M. 1985. Localization and properties of cell wall enzyme activities related to the final stages of lignin biosynthesis.J. Exp. Bot. 36:503–510.

    CAS  Google Scholar 

  • Gossett, D.R., Millhollon, E.P., andLucas, M.C. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.Crop. Sci. 43:706–714.

    Article  Google Scholar 

  • Grayburn, W.S., Schneider, G.R., Hamilton-Kemp, T.R., Bookjans, G., Ali, K., andHildebrand, D.F. 1991. Soybean leaves contain multiple lipoxygenases.Plant Physiol. 95:1214–1218.

    PubMed  CAS  Google Scholar 

  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., andAllen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.Proc. Natl. Acad. Sci. U.S.A. 90:1629–1633.

    PubMed  CAS  Google Scholar 

  • Guzy, M.R., andHeath, R.L. 1993. Responses to ozone of varieties of common bean (Phaseolus vulgaris L.).New Phytol. 124:617–625.

    CAS  Google Scholar 

  • Halliwell, B. 1991. The biological toxicity of free radicals and other reactive species. pp. 37–58,in O.I. Arouma, and B. Halliwell (eds.). Free Radicals and Food Additives. Taylor and Francis, New York.

    Google Scholar 

  • Halliwell, B., andGutteridge, J.M.C. 1985. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, 346 pp.

    Google Scholar 

  • Hamberg, M., andGardner, H.W. 1992. Review-oxylipin pathway to jasmonates: Biochemistry and biological significance.Biochem. Biophys. Acta 1165:1–18.

    PubMed  CAS  Google Scholar 

  • Hildebrand, D.F., Rodriguez, J.G., Brown, G.C., andVolden, C.S. 1986a. Two spotted spider mite (Acari: Tetranychidae) infestations on soybeans: Effect on composition and growth of susceptible and resistant cultivars.J. Econ. Entomol. 79:915–921.

    CAS  Google Scholar 

  • Hildebrand, D.F., Rodriguez, J.G., Brown, G.C., Luu, K.T., andVolden, C.S. 1986b. Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae).J. Econ. Entomol. 79:1459–1465.

    Google Scholar 

  • Hu, M.-L. 1994. Measurement of protein thiol groups and glutathione in plasma.Methods Enzymol. 233:380–384.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A., Chin, S.M., andLinn, S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.Science 240:640–642.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., andMiles, P.W. 1993. Responses of a compatible lucerne variety to attack by spotted alfalfa aphid: Changes in redox balance in affected tissues.Entomol. Exp. Appl. 67:263–274.

    Google Scholar 

  • Jiang, Z., Woolard, A.C.S., andWolff, S.P. 1991. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange, Comparison with the TBA assay and iodometric method.Lipids 26:853–856.

    PubMed  CAS  Google Scholar 

  • Jiang, Z., Hunt, J.V., andWolff, S.P. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein.Anal. Biochem. 202:384–389.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, V., andMiller, R.W. 1987. Tiron as a substrate for mushroom tyrosinase.Phytochemistry 26:2459–2466.

    Article  CAS  Google Scholar 

  • Kanofsky, J.R., andAxelrod, B. 1986. Singlet oxygen production by soybean lipoxygenase isozymes.J. Biol. Chem. 261:1099–1104.

    PubMed  CAS  Google Scholar 

  • Kogan, M., andKuhlman, D.E. 1982. Soybean Insects: Identification and Management in Illinois. Agricultural Experiment Station, University of Illinois, Bulletin No. 773.

  • Lagrimini, L.M., Burkhart, W., Moyer, M., andRothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression.Proc. Natl. Acad. Sci. U.S.A. 84:7542–7546.

    PubMed  CAS  Google Scholar 

  • Law, M.Y., Charles, S.A., andHalliwell, B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplast. The effect of hydrogen peroxide and of paraquat.Biochem. J. 210:889–903.

    Google Scholar 

  • Liu, S., Norris, D.M., Hartwig, E.E., andXu, M. 1992. Inducible phytoalexins in juvenile soybean genotypes predict soybean looper resistance in fully developed plants.Plant Physiol. 100:1479–1485.

    PubMed  CAS  Google Scholar 

  • Liu, S., Norris, D.M., andLi, J. 1993. Peroxidase activity is correlated with stress-inducible insect resistance inGlycine max.Entomol. (Trends in Arig. Sci.) 1:75–84.

    Google Scholar 

  • Mehdy, M. 1994. Active oxygen species in plant defense against pathogens.Plant Physiol. 105:467–472.

    PubMed  CAS  Google Scholar 

  • Mittler, R., andZilinskas, A. 1991. Purification and characterization of pea cytosolic ascorbate peroxidase.Plant Physiol. 97:961–968.

    Google Scholar 

  • Mohri, S., Endo, K., Matsuda, K., Kitamura, K., andFujimoto, K. 1990. Physiological effects of soybean seed lipoxygenase on insects.Agric. Biol. Chem. 54:2265–2270.

    CAS  Google Scholar 

  • Montalbini, P. 1991. Effect of rust infection on leaves on uricase, allantoinase, and ureides in susceptible and hypersensitive soybean leaves.Physiol. Mol. Plant Pathol. 39:173–188.

    Article  CAS  Google Scholar 

  • Norris, D.M. 1994. Phytochemicals as messengers altering behavior, pp. 33–54,in T.N. Ananthakrishnan (ed.). Functional Dynamics of Phytophagous Insects. Oxford & IBH Publishing Co., New Delhi.

    Google Scholar 

  • Norris, D.M., andLiu, S. 1992. A common chemical mechanism for insect-plant communication, pp. 186–187,in S.B.J. Menken, J.H. Visser, and P. Harrewijn (eds.). Proceedings 8th International Symposium on Insect-Plant Relationships. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Orr, W.C., andSohal, R.S. 1994. Extension of life-span by overexpression of superoxide dismutase and catalase inDrosophila melanogaster.Science 263:1128–1130.

    PubMed  CAS  Google Scholar 

  • Paxton, J.D., andGroth, J. 1994. Constraints on pathogens attacking plants.Crit. Rev. Plant Sci. 13:77–95.

    Google Scholar 

  • Popham, P.L., andNovacky, A. 1991. Use of dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction.Plant Physiol. 96:1157–1160.

    PubMed  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.C., Martin, B.A., andStewart, C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.Plant Cell 6:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Pritsos, C.A., Pastore, J., andPardini, R.S. 1991. Role of superoxide dismutase in the protection and tolerance to the prooxidant allelochemical quercetin inPapilio polyxenes, Spodoptera eridania, andTrichloplusia ni.Arch. Insect Biochem. Physiol. 16:273–282.

    Article  CAS  Google Scholar 

  • Ridge, I., andOsborne, D.A. 1970. Hydroxyproline and peroxidases in cell walls ofPisum sativum: Regulation by ethylene.J. Exp. Bot. 21:843–856.

    CAS  Google Scholar 

  • Rosenthal, G.A., andBerenbaum, M.R. (eds.) 1991. Herbivores—Their Interactions with Plant Secondary Metabolites, Vol. 1 Academic Press, San Diego. 468 pp.

    Google Scholar 

  • Slansky, F., Jr. 1990. Insect nutritional ecology as a basis for studying host plant resistance.Fla. Entomol. 73:359–378.

    Google Scholar 

  • Smith, C.M., andBrim, C.A. 1979. Field and laboratory evaluation of soybean lines for resistance to corn earworm leaf feeding.J. Econ. Entomol. 72:78–80.

    Google Scholar 

  • Summers, C.B., andFelton, G.W. 1994. Prooxidant effects of phenolic acids on the generalist herbivoreHelicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry.Insect Biochem. Mol. Biol. 24:943–953.

    Article  CAS  Google Scholar 

  • Sutherland, M.W. 1991. The generation of oxygen radicals during host plant responses to infection.Physiol. Mol. Plant Pathol. 39:79–83.

    Article  CAS  Google Scholar 

  • Ueda, J., andKato, J. 1980. Isolation and identification of a senescence-promoting substance from wormwood (Artemesia absinthium L.).Plant Physiol. 66:246–249.

    Article  PubMed  CAS  Google Scholar 

  • Vianello, A., andMacri, F. 1991. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells.J. Bioenerg. Biomembr. 23:409–423.

    Article  PubMed  CAS  Google Scholar 

  • Vick, B.A., andZimmerman, D.C. 1987. Oxidative systems for modification of fatty acids: the lipoxygenase pathway, pp. 53–90,in P.K. Stumpf (ed.). The Biochemistry of Plants: A Comprehensive Treatise, Vol. 9. Academic Press, Orlando, Florida.

    Google Scholar 

  • Yu, B.P. 1994. Cellular defenses against damage by reactive oxygen species.Physiol. Rev. 74:139–162.

    PubMed  CAS  Google Scholar 

  • Zacheo, G., andBleve-Zacheo, T. 1988. Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants toMeloidogyne incognita attack.Physiol. Mol. Plant Pathol. 32:313–322.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, J.L., Felton, G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21, 1511–1530 (1995). https://doi.org/10.1007/BF02035149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02035149

Key Words

Navigation