Advertisement

ESR investigation of gamma-irradiated Aspirin

  • O. Cozar
  • V. Chis
  • L. David
  • G. Damian
  • I. Barbur
Letter to the Editor

Abstract

Electron spin resonance spectroscopy was used to investigate the radiation damage in a powder of 2-acetoxybenzoic acid (Aspirin). Three types of radicals occur by γ-irradiation of Aspirin at room temperature. Two of them are the result of hydrogen abstraction while the third is produced by hydrogen addition at one of the carbon atoms of the ring. The relative yielding of the free radicals as a function of absorbed dose in the range of 2.4 kGy to 160 kGy is also discussed.

Keywords

Hydrogen Radiation Spectroscopy Physical Chemistry Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. C. Box, Radiation Effects: ESR and ENDOR Analysis, Academic Press, New York, 1977.Google Scholar
  2. 2.
    J. E. Wertz, J. R. Bolton, Electron Spin Resonance, Elementar Theory and Practical Applications, McGraw Hill, New York, 1989.Google Scholar
  3. 3.
    International Atomic Agency, Report of the Meeting of the Coordinated Research Programme on the Development of Quality Control Dosimetry Techniques for Particle Beam Processing, 2–6 April 1990, Budapest, Hungary.Google Scholar
  4. 4.
    F. Zeegers, B. Tilquin, in: ESR Application in Organic and Bioorganic Materials,B. Catore (Ed.), Springer-Verlag, Berlin, 1992, p. 291.Google Scholar
  5. 5.
    C. F. Chignell, Dev. Drugs Mod. Med. (1986) 197.Google Scholar
  6. 6.
    M. C. R. Symons, Philos Trans. Roy. Soc. London, B., 311 (1985) 451.Google Scholar
  7. 7.
    M. Gibella, T. Pronce, B. Tilquin, J. Chim. Phys., 91 (1994) 1868.Google Scholar
  8. 8.
    M. D. Shattuck, Y. Ma, M. Itoh, H. Shields, Radiat. Res., 120 (1989) 430.PubMedGoogle Scholar
  9. 9.
    C. I. Pchejetckii, A. G. Kotor, V. K. Milinciuc, B. A. Roginskii, V. I. Typikov, EPR Svobodnih Radicalov v Radiationoi Himii, Moskva, 1972.Google Scholar
  10. 10.
    M. Desrosiers, Appl. Radiation Isotopes, 42 (1991) 617.CrossRefGoogle Scholar
  11. 11.
    Y. Lion, G. Denis, M. M. Mossoba, P. Riesz, Int. J. Radiat. Biol., 43 (1983) 71.Google Scholar
  12. 12.
    T. Kojima, R. Tanaka, Y. Morita, T. Seguchi, Appl. Radiation Isotope., 37 (1986) 517.CrossRefGoogle Scholar
  13. 13.
    B. Kamanopoulou, J. Barthe, C. Hickman, G. Portal, Radiat. Prot. Dosim., 17 (1986) 185.Google Scholar
  14. 14.
    D. A. Svistunenko, G. T. Rikhireva, M. K. Pulatova, N. M. Emanuel, U. Eichhoff, Bruker Report, ISSN 0724-0185, 1991/1992.Google Scholar
  15. 15.
    S. Yamanchi, N. Hirota, J. Am. Chem. Soc., 107 (1985) 5021.CrossRefGoogle Scholar
  16. 16.
    D. H. Giamolva, D. F. Church, W. A. Pryor, J. Am. Chem. Soc., 108 (1986) 6646.CrossRefGoogle Scholar
  17. 17.
    W. Gordy, Theory and Applications of Electron Spin Resonance, John Wiley, New York, 1980.Google Scholar
  18. 18.
    M. D. Sevilla, C. Van Paemel, G. Zorman, J. Phys. Chem., 76 (1972) 3577.CrossRefPubMedGoogle Scholar
  19. 19.
    J. B. Cook, J. P. Ellot, S. J. Wyard, Mo. Phys., 13 (1967) 49.Google Scholar
  20. 20.
    P. Riesz, T. C. Smitherman, C. D. Scher, Int. J. Radiat. Biol., 17 (1970) 389.Google Scholar
  21. 21.
    L. A. Trofimov, A. A. Martinova, Khim. Vis. Energii, 3 (1969) 279.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • O. Cozar
    • 1
  • V. Chis
    • 1
  • L. David
    • 1
  • G. Damian
    • 1
  • I. Barbur
    • 1
  1. 1.Faculty of Physics“Babes-Bolyai” UniversityCluj-NapocaRomania

Personalised recommendations