Skip to main content
Log in

Spectrophotometric determination of uranium with 5-(2′-carboxyphenyl)azo-8-quinolinol in the non-ionic micellar medium of Triton X-100

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Triton X-100, a non-ionic surfactant, has been used to sensitize the reaction of 5-(2′-carboxyphenyl)azo-8-quinolinol with uranium in aqueous medium at pH 5.2–6.1 to form a wine red coloured complex. The micellar sensitization results in two and a half-times enhanced molar absorptivity enabling the determination of uranium in rock samples at ppm level, stability of the complex enhanced from 4 hours to at least 72 hours. Extraction of the complex is avoided making the procedure simple, rapid and easy in operation. The molar absorptivity and Sandell's sensitivity of the complex are 1.50·104l·mol−1·cm−1 and 15.9 ng·cm−2, respectively, at λmax=568 nm. Beer's law is obeyed over the range 0–3.3 μg·ml−1 of uranium. An amount as low as 0.19 μg·ml−1 of uranium could be determined satisfactorily within a relative standard deviation of ±1.3%. The limits of determination and practical quantitation are 0.29 and 1.80 ppm, respectively. The method was applied to the determination of uranium in soil, stream sediment and rock samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tikhonov, Zh. Analit. Khim., 32 (1977) 1435.

    Google Scholar 

  2. N. Ishibashi, K. Kine, Anal. Lett. 5 (1972) 637.

    Google Scholar 

  3. L. J. Cline Love, J. G. Habarta, J. G. Dorsey, Anal. Chem., 56 (1984) 1132A.

    Google Scholar 

  4. W. L. Hinze, H. N. Singh, Y. Baba, N. G. Harvey, Trends Anal. Chem., 3 (1984) 193.

    Article  Google Scholar 

  5. J. I. Garcia Alonso, M. E. Diaz Garcia, A. Sanz Medel, Talanta, 31 (1984) 361.

    Article  Google Scholar 

  6. A. Sanz-Medel, J. I. Garcia Alonso, E. Blanco Gonzalez, Anal. Chem., 57 (1995) 168.

    Google Scholar 

  7. J. H. Fendler, E. J. Fendler, Catalysis in Micellar and Macro Molecular Systems, Academic Press, New York, 1975.

    Google Scholar 

  8. W. L. Hinze, T. E. Riehi, H. N. Singh, Y. Baba, Anal. Chem., 56 (1984) 218.

    Article  Google Scholar 

  9. R. Saran, V. Umashanker, G. V. Ramanaiah, Anal. Lett., 23 (1990) 2291.

    Google Scholar 

  10. R. Saran, V. Umashanker, G. V. Ramanaiah, Bull. Chem. Soc. Japan, 65 (1992) 2291.

    Google Scholar 

  11. R. Saran, T. S. Basu Baui, P. Srinivas, D. T. Khating, Anal. Lett., 25 (1992) 1545.

    Google Scholar 

  12. R. Saran, A. K. Sardana, G. V. Ramanaiah, India J. Chem. Technol., 1 (1994) 285.

    Google Scholar 

  13. R. Saran, T. S. Basu Baul, Talanta, 41 (1994) 1537.

    Article  Google Scholar 

  14. R. Saran, N. K. Baishya, J. Radioanal. Nucl. Chem., 196 (1995) 363.

    Article  Google Scholar 

  15. P. J. Potts, A Handbook of Silicates Rock Analysis, Bell and Bain Ltd, Glasgow, 1987, p. 17.

    Google Scholar 

  16. A. E. Greenberg, Standard Methods for the Examination of Water and Waste Water, 18th ed., American Public Health Association, Washington, 1992, p. 1.

    Google Scholar 

  17. W. B. Smith, J. Drewry, Analyst, 86 (1961) 178.

    Article  Google Scholar 

  18. J. E. Currah, F. E. Beamish, Anal. Chem., 19 (1974) 609.

    Article  Google Scholar 

  19. G. Almassy, Z. Nady, J. Straub, Acta Chim. Acad. Sci. Hung., 7 (1955) 317.

    Google Scholar 

  20. G. H. Rizvi, J. Radioanal. Nucl. Chem., 125 (1988) 333.

    Google Scholar 

  21. P. K. Tarafder, G. V. Ramanaiah, M. K. Chaudhari, J. Radioanal. Nucl. Chem., 154 (1991) 331.

    Google Scholar 

  22. A. N. Verma, V. K. Bhoyare, S. B. Ghose, J. Indian Chem. Soc., 63 (1986) 784.

    Google Scholar 

  23. J. P. Perez Trujello, Z. Sosa, J. J. Arias, F. Garcia Montelongo, Anal. Lett., 21 (1988) 869.

    Google Scholar 

  24. A. M. S. Abdeannabi, M. Anter, Anal. Lett., 21 (1988) 881.

    Google Scholar 

  25. I. Singh, R. Saini, Talanta, 41 (1994) 2173.

    Article  Google Scholar 

  26. N. S. Dongra, A. D. Swant, J. Radioanal. Nucl. Chem., 199 (1995) 413.

    Google Scholar 

  27. D. R. do Carmo, J. F. de Andrade, M. Guimaraes, Anal. Lett., 28 (1995) 1897.

    Google Scholar 

  28. F. Zang, K. Y. Cui, Fenxi Huaxue, 23 (1995) 1323, Anal. Abstr. 4D68 (1996).

    Google Scholar 

  29. V. D. Pillai, V. M. Shinde, J. Radioanal. Nucl. Chem., 212 (1996) 23.

    Google Scholar 

  30. M. Rajan, V. M. Shinde, J. Radioanal. Nucl. Chem., 203 (1996) 169.

    Article  Google Scholar 

  31. P. N. Palei, Analytical Chemistry of Uranium, Ann Arbor-London, 1970, p. 44.

  32. F. J. Welcher, Organic Analytical Reagents, Vol. 1, Van Nostrand, London, 1947.

    Google Scholar 

  33. J. H. Yoe, A. L. Jones, Ind. Eng. Chem., Anal. Ed., 16 (1944) 111.

    Google Scholar 

  34. P. Job, Ann. Chim. (Paris) 9 (1928) 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saran, R., Baishya, N.K. Spectrophotometric determination of uranium with 5-(2′-carboxyphenyl)azo-8-quinolinol in the non-ionic micellar medium of Triton X-100. J Radioanal Nucl Chem 220, 217–221 (1997). https://doi.org/10.1007/BF02034859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02034859

Keywords

Navigation