The elemental composition of breast tissue: Can this be related to breast particle deposition?

  • K. H. Ng
  • L. M. Looi
  • D. A. Bradley
Medical Application

Abstract

In vitro instrumental neutron activation analysis (INAA) has been performed, yielding a range of minor and trace elemental concentrations for 46 paired samples of surgically-excised cancer breast tissue. In addition results of the soft X-ray microradiography of excised breast specimens have been used to quantify breast-particle clustering parameters, including area of cluster and nearest neighbour distance. Significant differences between elemental composition in histologically normal tissues and tissues exhibiting malignant lesions are supported by the observation of significant differences in particle clustering parameters. These observations have led to the investigation of the possible association between elemental composition of diseased breast tissues and the formation of breast particles. In particular a scanning electron microscope (SEM) with an energy dispersive X-ray (EDX) facility has been used to locate breast particles and conduct microanalysis of the particle constiuency. Results indicate these particles to consist of a complex of Ca and other elements including Mg, P, S and the ionic salts Na, Cl and K.

Keywords

Cancer Breast Elemental Composition Breast Tissue Instrumental Neutron Activation Analysis Energy Dispersive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Ng, Characterisation of breast lesions based on an analysis of their biophysical properties, PhD Thesis, University of Malaya, 1994.Google Scholar
  2. 2.
    D. A. Bradley, K. H. Ng, S. Green, P. J. Mountford, A. Shukri, J. Evans, Radiat. Phys. Chem. (1995) in press.Google Scholar
  3. 3.
    K. H. Ng, L. M. Looi, D. A. Bradley, Brit. J. Radiol. (1995) submitted.Google Scholar
  4. 4.
    K. H. Ng, D. A. Bradley, L. M. Looi, C. S. Mahmood, A. K. Wood, Appl. Radiation Isotopes, 44 (1993) 511.Google Scholar
  5. 5.
    C. Winters, R. L. Davies, A. J. Morgan, I. H. Gravelle, Micron Microscopica Acta, 17 (1986) 11.Google Scholar
  6. 6.
    K. H. Ng, D. A. Bradley, L. M. Loot, Appl. Radiation Isotopes, 46 (1995) 629.Google Scholar
  7. 7.
    A. E. Schwartz, G. W. Leddicotte, R. W. Fink, E. W. Friedman, Surgery, 76 (1974) 325.PubMedGoogle Scholar
  8. 8.
    I. Othman, N. M. Spyrou, Trace Element Analytical Chemistry in Medicine and Biology, Walter de Gruyter & Co., Berlin, 1980, p. 199.Google Scholar
  9. 9.
    P. C. Mangal, S. Kumar, Indian J. Phys., 58A (1984) 355.Google Scholar
  10. 10.
    S. L. Rizk, H. H. Sky-Peck, Cancer Res., 44 (1984) 5390.PubMedGoogle Scholar
  11. 11.
    A. N. Garg, R. G. Weginwar, V. Sagdeo, Biol. Trace Elem. Res., 26/27 (1990) 485.Google Scholar
  12. 12.
    L. Wilkinson, SYGRAPH: The system for Graphics, SYSTAT, Evanston, IL, 1990.Google Scholar
  13. 13.
    B. M. Galkin, P. Frasca, S. A. Peig, K. E. Holderness, Invest. Radiol., 17 (1982) 119.PubMedGoogle Scholar
  14. 14.
    L. Frappart, M. Boudeulle, J. Boumendil, H. C. Lin, I. Martinon, C. Palayer, et al., Hum. Pathol., 15 (1984) 880.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • K. H. Ng
    • 1
  • L. M. Looi
    • 2
  • D. A. Bradley
    • 3
  1. 1.Department of Radiology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Pathology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Asia Lab (M) Sdn. Bhd., CherasKuala LumpurMalaysia

Personalised recommendations