Skip to main content
Log in

Non-destructive analysis of copper in human brain tissue by neutron activation analysis using coincidence and anti-coincidence techniques

  • Medical Application
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Copper (Cu) is an essential element and is incorporated in many biomolecules that are involved in protecting the brain from oxidative damage. Many brain regions strongly affected by neurodegene rative diseases are small. A sensitive nondestructive procedure to determine Cu is desirable to preserve samples for additional studies. Copper is not easily determined by instrumental neutron activation analysis (INAA) due to high activity levels produced by major abundance elements such as sodium (Na) and chlorine (Cl), which produce a high Compton background. An INAA method involving a short epithermal neutron irradiation and counting with a Compton suppression system was developed to determine Cu in brain, via 5.1-min66Cu. These short irradiation results are compared to those based on coincidence spectrometry of annihilation photons from positron emitting 12.7-h64Cu after a long irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jeandel, M. B. Nicolas, F. Dubois, F. Nabet-Belleville, F. Penin, G. J. Cuny, Gerontology, 35 (1989) 275.

    PubMed  Google Scholar 

  2. G. V. Iyengar, W. E. Kollmer, H. J. M. Bowen, The Elemental Composition of Human Tissues and Fluids, Verlag Chemie, New York, 1978.

    Google Scholar 

  3. L-O. Plantin, U. Lysing-Tunnell, K. Kristensson, Biol. Trace Element Res., 13 (1987) 69.

    Google Scholar 

  4. N. I. Ward, J. A. Mason, J. Radioanal. Nucl. Chem., 113 (1987) 515.

    Google Scholar 

  5. C. O. Hershey, L. A. Hershey, T. Wongmongkolrit, A. W. Varnes, D. Breslau, Trace Elements in Medicine, (1985) No. 1, 40.

    Google Scholar 

  6. L. Tandon, B.-F. Ni, X. X. Ding, W. D. Ehmann, E. J. Kasarkis, W. R. Markesbery, J. Radional. Nucl. Chem., (1994) 331.

  7. H. A. Hartmann, M. A. Evenson, Medical Hypothesis, 38 (1992) 75.

    Google Scholar 

  8. W. J. Goldberg, N. Allen, Clin. Chem., 27 (1981) No. 4, 562.

    PubMed  Google Scholar 

  9. B. J. Stevens, Clin. Chem., 18 (1972) No. 11, 1379.

    PubMed  Google Scholar 

  10. E. Andrasi, J. Nadrasdi, Zs. Molnar, L. Bezur, L. Ernyei, Biol. Trace Element Res. (1990) 691.

  11. Z. Guisun, W. Yinson, T. Mingguang, Z. Min, W. Yongjie, Z. Fulin, J. Radioanal. Nucl. Chem., 151 (1991) 327.

    Google Scholar 

  12. M. Petra, G. Swift, S. Landsberger, Nucl. Instrum. Meth. Phys. Res., 299 (1990) 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deibel, M.A., Landsberger, S., Wu, D. et al. Non-destructive analysis of copper in human brain tissue by neutron activation analysis using coincidence and anti-coincidence techniques. J Radioanal Nucl Chem 217, 153–155 (1997). https://doi.org/10.1007/BF02034433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02034433

Keywords

Navigation