, Volume 6, Issue 2, pp 181–194 | Cite as

Commutators and decompositions of orthomodular lattices

  • Georges Chevalier


We show that in any complete OML (orthomodular lattice) there exists a commutatorc such that [0,c] is a Boolean algebra. This fact allows us to prove that a complete OML satisfying the relative centre property is isomorphic to a direct product [0,a] × [0,a] wherea is a join of two commutators, [0,a] is an OML without Boolean quotient and [0,a] is a Boolean algebra. The proof uses a new characterization of the relative centre property in complete OMLs. In a final section, we specify the previous direct decomposition in the more particular case of locally modular OMLs.

Key words

Orthomodular lattice commutator ideal of commutators relative centre property locally modular lattice 

AMS subject classifications (1980)

Primary 06C15 secondary 06B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Günter Bruns (1983) Varieties of modular ortholattices,Houston J. Math. 9, 1–7.Google Scholar
  2. 2.
    Ladislav Beran (1985)Orthomodular Lattices, Algebraic Approach, D. Reidel, Dordrecht.Google Scholar
  3. 3.
    Günter Bruns and Gudrun Kalmbach (1973) Some remarks on free orthomodular lattices,Proc. Lattice Theory Conf., J. Schmidt (ed.), Houston, pp. 397–408.Google Scholar
  4. 4.
    Georges Chevalier (1983) Relations binaires et congruences dans un treillis orthomodulaire.C. R. Acad. Sci. Paris Sér 1 Math. 296, 785–788.Google Scholar
  5. 5.
    Georges Chevalier (1984) Treillis orthomodulaires avec un nombre fini de commutateurs,Seminaire ‘Logique quantique et treillis orthomodulaires’, Lyon, pp. 38–41.Google Scholar
  6. 6.
    Georges Chevalier (1985) Les idéaux orthomodulaires maximaux d'un TOM,Séminaire ‘Logique quantique et triellis orthomodulaires’, Lyon, pp. 35–36.Google Scholar
  7. 7.
    Roger M. Cooke and Michiel van Lambagen (1983) The representation of the Takeuti's II-operator,Studia Logica,42, 407–415.CrossRefGoogle Scholar
  8. 8.
    Roger M. Cooke and Michiel van Lambagen (1984) Lattice valued commutativity measures,International Symposium on Quantum Logic, Köln.Google Scholar
  9. 9.
    Peter A. Fillmore (1965) Perspectivity in projection lattices,Proc. Amer. Math. Soc. 16, 383–387.Google Scholar
  10. 10.
    Richard Greechie and Louis Herman (1985) Commutator-finite orthomodular lattices,Order 1, 277–284.CrossRefGoogle Scholar
  11. 11.
    Gudrun Kalmbach (1983)Orthomodular Lattices, Academic Press, London.Google Scholar
  12. 12.
    Gudrun Kalmbach (1984) Décomposition des treillis orthomodulaires complets,Seminaire ‘Logique quantique et treillis orthomodulaires’, Lyon.Google Scholar
  13. 13.
    Irving Kaplansky (1951) Projections in Banach algebras,Ann. of Math. 53, 235–249.Google Scholar
  14. 14.
    Irving Kaplansky (1952) Algebras of type 1,Ann. of Math. 56, 460–472.Google Scholar
  15. 15.
    Irving Kaplansky (1968)Rings of Operators, Benjamin, New York.Google Scholar
  16. 16.
    Lynn H. Loomis (1955) The lattice theoretic background of the dimension theory of operator algebras,Mem. Amer. Math. Soc. No. 18.Google Scholar
  17. 17.
    Shûichirô Maeda (1955) Dimension functions on certain general lattices,J. Sci. Hiroshima Univ. 19, 211–237.Google Scholar
  18. 18.
    Shûichirô Maeda (1958) On the lattice of projections of a Baer *-ring,J. Sci. Hiroshima Univ. 22, 75–88.Google Scholar
  19. 19.
    E. L. Marsden (1970) The commutator and solvability in a generalized orthomodular lattice,Pacific J. Math. 33, 357–361.Google Scholar
  20. 20.
    Ronald P. Morash (1974) Remarks on the classification problem for infinite dimensional Hilbert lattices,Proc. Amer. Math. Soc. 43, 42–46.Google Scholar
  21. 21.
    Masanao Ozawa (1983) Boolean valued analysis and type 1AW *-algebras,Proc. Japan Acad. Ser. A Math. 59, 368–371.Google Scholar
  22. 22.
    W. Poguntke (1980) Finitely generated ortholattices,Colloq. Math. 33, 651–666.Google Scholar
  23. 23.
    Sylvia Pulmannová (1985) Commutators in orthomodular lattices,Demonstratio Math. 18, 187–208.Google Scholar
  24. 24.
    Arlan Ramsay (1965) Dimension theory in complete orthocomplemented weakly modular lattices,Trans. Amer. Math. Soc. 116, 9–31.Google Scholar
  25. 25.
    L. A. Skornyakov (1964)Complemented Modular Lattices and Regular Rings, Oliver and Boyd, Edinburgh and London.Google Scholar
  26. 26.
    Gaisi Takeuti (1981) Quantum set theory, G. Beltrametti and B. van Frassen (eds)Current Issues in Quantum Logic, Plenum Press, New York.Google Scholar
  27. 27.
    David M. Topping (1965) Jordan algebras of self-adjoint operators,Mem. Amer. Math. Soc. No. 53.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Georges Chevalier
    • 1
  1. 1.Institut de Mathématiques et InformatiqueUniversité Lyon 1France

Personalised recommendations