Journal of Chemical Ecology

, Volume 21, Issue 12, pp 1931–1946 | Cite as

Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment

  • Mikel A. Becerro
  • Xavier Turon
  • María J. Uriz


The presence of intraspecific variation in toxicity and its relationship with biological or ecological factors were studied in the spongeCrambe crambe. Within-specimen (periphery and central part), between-size (<1000 mm2 in area, between 1000 and 10,000 mm2 and >10,000 mm2) and between-habitat (well-illuminated and dark communities) variations in toxicity were evaluated by the Microtox bioassay. Quantitative differences were detected that were not attributable to within-specimen variation but to size and habitat effects. Habitat comparisons showed that sponges in the shaded habitat were significantly more toxic than those of the well-illuminated community. Sponges of the smaller size classes displayed significantly less toxicity than the medium-sized specimens. Results are interpreted under the optimal defense theory and their ecological implications are considered.

Key Words

Chemical ecology natural toxicity spatial variation defensive strategy encrusting sponges 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, F.R., andHarvell, C.D. 1993. Inducible defenses, phenotypic variability and biotic environments.Tree 5:407–410.Google Scholar
  2. Bakus, G.J. 1990. Quantitative ecology and marine biology. A.A. Balkema, Rotterdam.Google Scholar
  3. Bakus, G.J., Targett, N.M., andSchulte, B. 1986. Chemical ecology of marine organisms: An overview.J. Chem. Ecol. 12:951–985.CrossRefGoogle Scholar
  4. Basey, J.M., andJenkins, S.H. 1993. Production of chemical defenses in relation to plant growth rate.Oikos 68:323–338.Google Scholar
  5. Becerro, M.A. 1994. Chemically mediated bioactivity of the encrusting spongeCrambe crambe and its ecological implications. PhD thesis. University of Barcelona.Google Scholar
  6. Becerro, M.A., Löpez, N.I., Turon, X., andUriz, M.J. 1994a. Antimicrobial activity and surface film in marine sponges.J. Exp. Mar. Biol. Ecol. 179:195–205.CrossRefGoogle Scholar
  7. Becerro, M.A., Uriz, M.J., andTuron, X. 1994b. Trends in space occupation by the encrusting spongeCrambe crambe: Variation in shape as a function of size and environment.Mar. Biol. 121:301–307.CrossRefGoogle Scholar
  8. Becerro, M.A., Uriz, M.J., andTuron, X. 1995. Measuring toxicity in marine environments: A critical appraisal of three commonly used methods.Experientia 51:414–418.CrossRefGoogle Scholar
  9. Bennington, C.C., andThayne, W.V. 1994. Use and misuse of mixed model analysis of variance in ecological studies.Ecology 75(3):717–722.Google Scholar
  10. Berenbaum, M., andJ.J. Neal. 1985. Synergisms between myristicin and xanthotonin, naturally cooccurring plant toxicants.J. Chem. Ecol. 11:1349–1358.CrossRefGoogle Scholar
  11. Berlinck, R.G.S., Braeckman, J.C., Bruno, I., Daloze, D., Pem, S., Riccio, R., Spampinato, S., andSperoni, E. 1990. Two new guanidine alkaloids from the Mediterranean spongeCrambe crambe.Tetraedron Lett. 31:6531–6534.CrossRefGoogle Scholar
  12. Berlinck, R.G.S., Braeckman, J.C., Daloze, D., Bruno, I., Riccio, R., Rogeau, D., andAmade, P. 1992. Crambines C1 and C2: Two further ichthyotoxic guanidine alkaloids from the spongeCrambe crambe.J. Nat. Prod. 55:528–532.CrossRefGoogle Scholar
  13. Carral, E., Reigosa, M.J., andCarballeira, A. 1988.Rumex obtusifolius L: distribution of meadow species.J. Chem. Ecol. 14:1763–1773.CrossRefGoogle Scholar
  14. Coley, P.D., Bryant, J.P., andChapin, F.S. 1985. Resource availability and plant antiherbivory defense.Science 230:895–899.Google Scholar
  15. Coll, J.C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia).Chem. Rev. 92:613–631.CrossRefGoogle Scholar
  16. Coll, J.C., Bowden, B.F., Tapiolas, D.M., andDunlap, W.C. 1982. In situ isolation of allelochemicals released from soft corals (Coelenterata; Octocorallia): A totally submersible sampling apparatus.J. Exp. Mar. Biol. Ecol. 60:293–299.CrossRefGoogle Scholar
  17. Davis, A.R., Targett, N.M., McConnell, O.J., andYoung, C.M. 1989. Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and other mechanisms inhibiting settlement and overgrowth.Bioorg. Mar. Chem. 3:85–114.Google Scholar
  18. Davis, A.R., Butler, J., andvan Altena, I. 1991. Settlement behavior of ascidian larvae: Preliminary evidence for inhibition by sponge allelochemicals.Mar. Ecol. Prog. Ser. 72:117–123.Google Scholar
  19. Day, R.W., andQuinn, G.P. 1989. Comparisons of treatments after an analysis of variance in ecology.Ecol. Monogr. 59(4):433–463.Google Scholar
  20. Einot, I., andGabriel, K.R. 1975. A study of the power of several methods of multiple comparisons.J. Am. Stat. Assoc. 70:574–583.Google Scholar
  21. Fagerström, T., Larsson, S., andTenow, O. 1987. On optimal defence theory in plants.Funct. Ecol. 1:73–81.Google Scholar
  22. Faulkner, D.J. 1984. Marine natural products: Metabolites of marine invertebrates.Nat. Prod. Rep. 2:551–598.CrossRefGoogle Scholar
  23. Faulkner, D.J. 1986. Marine natural products.Nat. Prod. Rep. 1:1–86.CrossRefGoogle Scholar
  24. Faulkner, D.J. 1991. Marine natural products.Nat. Prod. Rep. 8:97–147.CrossRefPubMedGoogle Scholar
  25. Fautin, D.J. 1988. Biomedical importance of marine organisms.Mem. Cal. Acad. Sci. 13:1–236.Google Scholar
  26. Feeny, P.P. 1976. Plant apparency and chemical defenses.Recent Adv. Phytochem. 10:1–41.Google Scholar
  27. Hall, S., andStrichartz, G. 1990. Marine Toxins. Origin, Structure, and Molecular Pharmacology. American Chemical Society, Washington, D.C.Google Scholar
  28. Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 2nd ed. Academic Press, London.Google Scholar
  29. Harvell, C.D. 1986. The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs, and consequences.Am. Nat. 128:810–823.CrossRefGoogle Scholar
  30. Harvell, C.D., andFenical, W. 1989. Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.). I. Development of an in situ feeding assay.Mar. Ecol. Prog. Ser. 49:287–294.Google Scholar
  31. Harvell, C.D., Fenical, W., Roussis, V., Ruesink, J.L., Griggs, C.C., andGreene, C.H. 1993. Local and geographic variation in the defensive chemistry of a west Indian gorgonian coral (Briaerum asbestinum).Mar. Ecol. Prog. Ser. 20:273–287.Google Scholar
  32. Hay, M.E., Paul, V.J., Leiws, S.M., Gustafson, K., andTucker, J. 1988. Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen contents, herbivory and chemical versus morphological defenses.Oecologia 75:233–245.CrossRefGoogle Scholar
  33. Jackson, J.B.C. 1977. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies.Am. Nat. 11(980):743–767.CrossRefGoogle Scholar
  34. Jares-Erijman, E.A., Sakai, R., andRinehart, K.L. 1991. Crambescidins: New antiviral and cytotoxic compounds from the spongeCrambe crambe.J. Org. Chem. 56:5712–5715.CrossRefGoogle Scholar
  35. Kaiser, K.L., andRibo, J.M. 1988.Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation.Tox. Assess. 3:195–237.Google Scholar
  36. Maida, M., Carroll, A.R., andColl, J.C. 1993. Variability of terpene content in the soft coralSinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications.J. Chem. Ecol. 19(10):2285–2296.CrossRefGoogle Scholar
  37. Martin, D., andUriz, M.J. 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates.J. Exp. Mar. Biol. Ecol. 173:11–27.CrossRefGoogle Scholar
  38. McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., andStruhsaker, T.T. 1978. Phenolic content of vegetation in two African rain forests: Ecological implications.Science 202:61–64.Google Scholar
  39. Moon, R.E., andMartin, D.F. 1985. Allelopathic substances from a marine alga (Nannochloris sp.), pp. 371–380,in A.C. Tompson (ed.). The Chemistry of Allelopathy. Biochemical Interactions among Plants. ACS Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  40. Paul, V.J., andVan Alystne, K.L. 1988. Chemical defense and chemical variation in some tropical Pacific species ofHalimeda (Halimedaceae, chlorophyta).Coral Reefs 6:263–269.CrossRefGoogle Scholar
  41. Pawlik, J.R., Burch, M.T., andFenical, W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: A preliminary survey.J. Exp. Mar. Biol. Ecol. 108:55–66.CrossRefGoogle Scholar
  42. Porter, J.M., andTarget, W.M. 1988. Allelochemical interactions between sponges and corals.Biol. Bull. 175:230–239.Google Scholar
  43. Potvin, C., andRoff, D.A. 1993. Distribution-free and robust statistical methods: Viable alternatives to parametric statistics?Ecology 74:1617–1628.Google Scholar
  44. Rhoades, D.F. 1979. Evolution of plant chemical defence against herbivores, pp. 3–54,in G.A. Rosenthal, and D.H. Janzen, (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  45. Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry, pp. 168–213,in J.W. Wallace, and R.L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Recent Advances in Phytochemistry, Vol. 10. Plenum publishing, New York.Google Scholar
  46. Ribo, J.M., andKaiser, K.L.E. 1987.Photobacterium phosphoreum toxicity bioassay. I. Test methods and procedures.Tox. Assess. 2:305–323.Google Scholar
  47. Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando.Google Scholar
  48. Russ, G.R. 1982. Overgrowth in a marine epifaunal community: Competitive hierarchies and competitive networks.Oecologia, 53:12–19.CrossRefGoogle Scholar
  49. Sammarco, P.W., Coll, J.C., andLa Barre, S. 1983. Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on select scleractinian corals.Coral Reefs 1:173–178.CrossRefGoogle Scholar
  50. Sebens, K.P. 1987. The ecology of indeterminate growth in animalsAnnu.Rev. Ecol. Syst. 18:371–407.CrossRefGoogle Scholar
  51. Skogsmyr, I., andFagerström, T. 1992. The cost of anti-herbivory defence: An evaluation of some ecological and physiological factors.Oikos 64:451–457.Google Scholar
  52. Stowe, L.G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field.J. Ecol. 67:1065–1085.Google Scholar
  53. Sullivan, B., Faulkner, D.J., andWebb, L. 1983. Siphonodictine, a metabolite of the burrowing spongeSiphonodictyon sp. that inhibits coral growth.Science 221:1175–1176.Google Scholar
  54. Thompson, J.E., Walker, R.P., andFaulkner, D.J. 1985. Screening and bioassays for biologically active substances from forty marine species from San Diego, California, USA.Mar. Biol. 88:11–21.CrossRefGoogle Scholar
  55. Thompson, J.E., Murphy, P.T., Bergquist, P.R., andEvans, E.A. 1987. Environmentally induced variation in diterpene composition of the marine spongeRhopaloeides odorabile.Biochem. Syst. Ecol. 15:595–606.CrossRefGoogle Scholar
  56. Turon, X., andBecerro, M.A. 1992. Growth and survival of several ascidian species from the northwestern Mediterranean.Mar. Ecol. Progr. Ser. 82:235–247.Google Scholar
  57. Uriz, M.J., Turon, X., Becerro, M.A., Galera, J., andLozano, J. 1995. Patterns of resource allocation to somatic, defensive and reproductive functions in the Mediterranean encrusting spongeCrambe crambe.Mar. Ecol. Progr. Ser. 124:159–170.Google Scholar
  58. Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: Some basic aspects.Mar. Ecol. Progr. Ser. 58:175–189.Google Scholar
  59. Wylie, C.R., andPaul, V.J. 1989. Chemical defenses in three species ofSinularia (Coelenterata, Alcyonacea): Effects against generalist predators and the butterflyfishChaetodon unimaculatus Bloch.J. Exp. Mar. Biol. Ecol. 129:141–160.CrossRefGoogle Scholar
  60. Yates, J.L., andP. Peckol. 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweedFucus vesiculosus.Ecology 74:1757–1766.Google Scholar
  61. Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Mikel A. Becerro
    • 1
  • Xavier Turon
    • 2
  • María J. Uriz
    • 1
  1. 1.Centre for Advanced Studies (CSIC) Camí de Sta. Bàrbara s/nBlanes (Girona)Spain
  2. 2.Department of Animal Biology (Invertebrates) Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations