Journal of Chemical Ecology

, Volume 21, Issue 11, pp 1837–1845 | Cite as

Roles of cuticular hydrocarbons in intra-and interspecific recognition behavior of two rhinotermitidae species

  • Shozo Takahashi
  • Ahdin Gassa
Article

Abstract

Soldiers of two termite species.Reticulitermes speratus andCoptotermes formosanus, showed aggressive behavior toward workers of other species. Soldiers always exhibited aggressive behavior to a conspecific worker treated with heterospecific cuticular hydrocarbons. A bioassay using live workers to test contact chemical cues was developed.

Key Words

Specific recognition aggressive behavior contact chemical cues Rhinotermitidae cuticular hydrocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagneres, A.G., Killian, A., Clement, J.L., andLange, C. 1991. Interspecific recognition among termites of the genusReticulitermes: Evidence for a role for the cuticular hydrocarbons.J. Chem. Ecol. 17:2397–2420.Google Scholar
  2. Beaton, C., Eisner, T., andKriston, I. 1973. Insect behavior: Surrogate insect produced with magnetic stirrer.Ann. Entomol. Soc. Am. 66:1365–1366.Google Scholar
  3. Eisner, T., Kriston, I., andAneshansley, D.J. 1976. Defensive behavior of a termite (Nasutitermes exitiosus)Behav. Ecol. Sociobiol. 1:83–125.Google Scholar
  4. Gassa, A., andTakahashi, S. 1995. Effects of modification of cuticular hydrocarbon composition on the recognition behavior of termites.Jpn. J. Environ. Entomol. Zool. 7:64–71.Google Scholar
  5. Gassa, A., Takahashi, S., andOkamoto, H. 1994. Effects of cuticular coating on the behavior and survival of termites.Jpn. J. Environ. Entomol. Zool. 6:53–60.Google Scholar
  6. Haverty, M.I., Nelson, L.J., andPage, M. 1990. Cuticular hydrocarbons of four populations ofCoptotermes formosanus Shiraki in the United States. Similarities and origins of introductions.J. Chem. Ecol. 16:1635–1647.Google Scholar
  7. Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication, pp. 177–226,in D.W. Stanley-Samuelson and D.R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry, and Biology. University of Nebraska Press, Lincoln.Google Scholar
  8. Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1980. Chemical mimicry as an integrating mechanism: Cuticular hydrocarbons of a termitophile and its host.Science 210:431–433.Google Scholar
  9. Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1982a. Chemical mimicry as an integrating mechanism for three termitophiles associated withReticulitermes virginicus (Banks).Psyche 89:157–167.Google Scholar
  10. Howard, R.W., McDaniel, C.A., Nelson, D.R., Blomquist, G.J., Gelbaum, L.T., andZalkow, L.H. 1982b. Cuticular hydrocarbons ofReticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues.J. Chem. Ecol. 8:1227–1239.Google Scholar
  11. Su, N.Y. andHaverty, M.I. 1991. Agonistic behavior among colonies of the Formosan subterranean termite,Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition.J. Insect Behav. 4:115–128.Google Scholar
  12. Takahashi, S. 1993. Insect behavior modifiers, pp. 241–263,in S.M. Colegate and R.J. Molyneux (eds.). Bioactive Natural Products: Detection, Isolation, and Structural Determination. CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Shozo Takahashi
    • 1
  • Ahdin Gassa
    • 1
  1. 1.Pesticide Research Institute, Faculty of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations