Skip to main content
Log in

Phloem transport of antirrhinoside, an iridoid glycoside, inAsarina scandens (Scrophulariaceae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Iridoid glycosides, terpene-derived compounds found in many plant families, protect the plant against generalist and nonadapted specialist insect herbivores, fungi, and bacteria. Antirrhinoside, a common iridoid glycoside in the tribe Antirrhineae (Scrophulariaceae), was rapidly labeled when mature leaves ofAsarina scandens were exposed to14CO2. Antirrhinoside was translocated in the phloem along with sucrose. Radiolabeled antirrhinoside appeared in the petiole of the labeled leaf within 20 min of the beginning of the labeling period. Antirrhinoside was also found in phloem sap obtained by the EDTA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G., Khoi, N.H., Bergner, C., andLien, N.T. 1979. Plant growth inhibiting properties of plumieride fromPlumeria obtusifolia.Phytochemistry 18:1399–1400.

    Google Scholar 

  • Bianco, A., Caciola, P., Guiso, M., Lavarone, C., andTrogolo, C. 1981. Iridoids. XXXI Carbon-13 nuclear magnetic resonance spectroscopy of free iridoid glucosides in D2O solution.Gazz. Chim. Ital. 111:201–206.

    Google Scholar 

  • Boros, C.A., Stermitz, F.R., Mcfarland, N. 1991. Processing of iridoid glycoside antirrinoside fromMaurandya antirrhiniflora (Scrophulariaceae) byMeris paradoxa (Geometridae) andLepipolys species (Noctuidae).J. Chem. Ecol. 17:1123–1133.

    Google Scholar 

  • Bowers, M.D. 1991. Iridoid glycosides, pp. 297–325.in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, San Diego.

    Google Scholar 

  • Bowers, M.D., andFarley, S. 1990. The behavior of grey jays,Perisoreus canadensis, towards palatable and unpalatable Lepidoptera.Anim. Behav. 39:699–705.

    Google Scholar 

  • Girousse, C., Bonnemain, J.L., Delrot, S., andBournoville, R. 1991. Sugar and amino acid composition of the phloem sap ofMedicado sativa. A comparative study of two collecting methods.Plant Physiol. Biochem. 29:41–48.

    Google Scholar 

  • Haissig, B.E., andDickson, R.E. 1979. Starch measurement in plant tissue using enzymatic hydrolysis.Physiol. Plant. 47:151–157.

    Google Scholar 

  • Inouye, H., andUesato, S. 1986. Biosynthesis of iridoids and secoiridoids.Prog. Chem. Org. Nat. Prod. 50:169–236.

    Google Scholar 

  • King, R.W., andZeevart, J.A.D. 1974. Enhancement of phloem exudation from leaf petioles by chelating agents.Plant Physiol. 53:96–103.

    Google Scholar 

  • Kooiman, P. 1970. The occurrence of iridoid glycosides in the Scrophulariaceae.Acta Bot. Neerl. 19:329–340.

    Google Scholar 

  • Kubo, I., Matsumoto, A., andTakase, I. 1985. A multichemical defense mechanism of bitter oliveOlea europaea (Oleaceae). Is oleuropein a phytoalexin precursor?J. Chem. Ecol. 11:251–263.

    Google Scholar 

  • Narvaez-Vasquez, J., Orozco-Cardenas, M.L., andRyan, C.A. 1994. A sulfhydryl reagent modulates systemic signaling for wound-induced and systemin-induced proteinase inhibitor synthesis.Plant Physiol. 105:725–730.

    PubMed  Google Scholar 

  • Nishida, R., andFukami, H. 1989. Host plant iridoid-based chemical defense of an aphid,Acyrthosiphon nipponicus, against ladybird beetles.J. Chem. Ecol. 15:1837–1845.

    Google Scholar 

  • Ryals, J., Uknes, S., andWard, E. 1994. Systemic acquired resistance.Plant Physiol. 104:1109–1112.

    PubMed  Google Scholar 

  • Scarpati, M.L., Guiso, M., andEsposito, P. 1968. Iridoidi (V). Struttura e configurazione dell Antirrinoside.Gazz. Chim. Ital. 98:177–190.

    Google Scholar 

  • Stermitz, F.R., Foderaro, T.A., andLi, Y-X. 1993. Iridoid glycoside uptake byCastilleja integra via root parasitism onPenstemon teucriodies.Phytochemistry. 32:1151–1153.

    Google Scholar 

  • Sturgeon, R.J. 1990. Monosaccharides, pp. 1–37,in P.M. Dey (ed.). Methods in Plant Biochemistry, Vol. 2. Carbohydrates. Academic Press, New York.

    Google Scholar 

  • Touchstone, J.C., andDobbins, M.F. 1983. Practice of Thin Layer Chromatography, 2nd ed. Wiley, New York, p. 174.

    Google Scholar 

  • Turgeon, R., andGowan, E. 1992. Sugar synthesis and phloem loading inColeus blumei leaves.Planta 187:388–394.

    Google Scholar 

  • Turgeon, R., Beebe, D.U., andGowan, E. 1993. The intermediary cell: Minor-vein anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae.Planta 191:446–456.

    Google Scholar 

  • Van der Sluis, W.G., Van der Nat. J.M., andLabadie, R.P. 1983. Thin-layer chromatographic bioassay of iridoid and secoiridoid glucosides with a fungitoxic aglycone moiety using β-glucosidase and the fungusPenicillium expansum as a test organism.J. Chromatogr. 259:522–526.

    PubMed  Google Scholar 

  • Winter, H., Lohaus, G., andHeldt, H.W. 1992. Phloem transport of amino acids in relation to their cytosolic levels in barley leaves.Plant Physiol. 99:996–1004.

    Google Scholar 

  • Zweig, G., andSherma, J. (eds). 1972. CRC Handbook of Chromatography, Vol. 2, CRC Press, Ohio. p. 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowan, E., Lewis, B.A. & Turgeon, R. Phloem transport of antirrhinoside, an iridoid glycoside, inAsarina scandens (Scrophulariaceae). J Chem Ecol 21, 1781–1788 (1995). https://doi.org/10.1007/BF02033676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033676

Key Words

Navigation