Journal of Chemical Ecology

, Volume 21, Issue 11, pp 1677–1695 | Cite as

Quadrupole storage mass spectrometry of mono- and dimethylalkanes

  • Robert E. Doolittle
  • Adron T. Proveaux
  • Hans T. Alborn
  • Robert R. Heath
Article

Abstract

Monomethyl and dimethylalkanes with one, two, three, four, five, and seven methylene groups separating the methyl branches were synthesized and analyzed by magnetic sector and quadrupole storage (ion trap) mass spectrometry. The spectra produced by the magnetic sector instrument were in good agreement with previously reported data, whereas the ion trap spectrometer produced ions resulting from cleavages adjacent to the branching points, markedly different than those from the magnetic sector instrument. Fragmentation patterns show that the ion trap mass spectrometer can be used to characterize branched alkanes in nanogram and subnanogram quantities.

Key Words

insect hydrocarbons monomethyl alkanes dimethylalkanes mass spectra ion trap magnetic sector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alborn, H.T., Doolittle, R.E., Zanen, P.O., Cardé, R.T., andTumlinson, J.H. 1995. Oviposition kairomones ofBrachymeria intermedia a parasite of gypsy moth pupae.J. Chem. Ecol. In press.Google Scholar
  2. Biemann, K. 1962. Mass Spectrometry Organic Chemical Applications, p. 80. McGraw-Hill, New York.Google Scholar
  3. Blomquist, G.J., andDillwith, J.W. 1985. Cuticular lipids, pp. 121–125,in G.A. Kerbut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Vol. 3. Pergamon Press, Elmsford, New York.Google Scholar
  4. Hadley, N.F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego.Google Scholar
  5. Jackson, L.L., andBlomquist, G.J. 1976. Insect waxes, pp. 201–233,in P.E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam.Google Scholar
  6. Jacob, J. 1979. Chemosystematic observations on the cuticular lipids of beetles.Biochem. System. Ecol. 7:141–145.Google Scholar
  7. Jones, R. L., Lewis, W.J., Bowman, M.C., Beroza, M., andBierl, B.A. 1971. Host-seeking stimulant for parasite of corn earworm: Isolation, identification, and synthesis.Science 173:842–843.Google Scholar
  8. Lockey, K.H. 1976. Cuticular hydrocarbons ofLocusta, Schistocerca andPeriplaneta, and their role in waterproofing.Insect Biochem. 6:457–472.Google Scholar
  9. Lockey, K.H. 1978. The adult cuticular hydrocarbons ofTenebrio molitor andTenebrio obscurus (F.) (Coleoptera: Tenebrionidea).Insect Biochem. 8:237–250.Google Scholar
  10. Lockey, K.H. 1980. Insect cuticular hydrocarbons.Comp. Biochem. Physiol. 65B:457–462.Google Scholar
  11. March, R.E., andHughes, R.J. 1989. Dynamic range and detection limit, pp. 334–335,in J.D. Winegardner (ed.). Quadrupole Storage Mass Spectrometry: Chemical Analysis, Vol. 102. John Wiley & Sons, New York.Google Scholar
  12. McCarthy, E.D., Han, J., andCalvin, M. 1968. Hydrogen atom transfer in mass spectrometric fragmentation patterns of saturated aliphatic hydrocarbons.Anal. Chem. 40:1475–1480.Google Scholar
  13. Nelson, D.R., andSukkestad, D.R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of tobacco hornworm.Biochemistry 9:4601–4611.PubMedGoogle Scholar
  14. Nelson, D.R., andSukkestad, D.R. 1975. Normal and branched alkanes from cast skins of the grasshopperSchistocerca vaga (Scudder).J. Lipid Res. 16:12–18.PubMedGoogle Scholar
  15. Nelson, D.R., Sukkestad, D.R., andZaylskie, R.G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm.J. Lipid Res. 13:413–421.PubMedGoogle Scholar
  16. Phinney, C.S. 1993. Enhancement of molecular ion detection by variation of mass analyzer thermal energy for C10-C24 alkanes by ion trap mass spectrometry. Proceedings of the 41st American Society of Mass Spectrometry. conference on mass spectrometry and allied topics. San Francisco, California.Google Scholar
  17. Pomonis, J.G., Fatland, C.F., Nelson, D.R., andZaylskie, R.G. 1978. Insect hydrocarbons I. Corroboration of structure by synthesis and mass spectrometry of mono- and dimethylalkanes.J. Chem. Ecol. 4:27–39.Google Scholar
  18. Pomonis, J.G., Nelson, D.R., andFatland, C.L. 1980. Insect hydrocarbons 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between methyl groups on fragmentation.J. Chem. Ecol. 6:965–972.Google Scholar
  19. Pomonis, J.G., Hakk, H., andFatland, C.L. 1989. Synthetic methyl- and dimethylalkanes Kovats indices, [13C]NMR and mass spectra of some methylpentacosanes and Z. X-dimethyl-heptacosanes.J. Chem. Ecol. 15:2319–2333.Google Scholar
  20. Sonnet, P.E. 1976. Synthesis of 1,5-dimethylalkanes, components of insect hydrocarbons.J. Am. Oil Chem. Soc. 53:57–59.PubMedGoogle Scholar
  21. Spiteller, G. 1966. Massenspektrometrische Strukturanalyse Organisher Verbeindunger, Verlag Chemie, p. 91, Frankfurt.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Robert E. Doolittle
    • 1
  • Adron T. Proveaux
    • 1
  • Hans T. Alborn
    • 1
  • Robert R. Heath
    • 1
  1. 1.Insect Attractants, Behavior, and Basic Biology Research LaboratoryAgricultural Research Service, U.S. Department of AgricultureGainesville

Personalised recommendations