Journal of Chemical Ecology

, Volume 20, Issue 9, pp 2455–2466 | Cite as

Importance of phenolic glucosides in host selection of shoot galling sawfly,Euura amerinae, onSalix pentandra

  • Jari Kolehmainen
  • Heikki Roininen
  • Riitta Julkunen-Tiitto
  • Jorma Tahvanainen


The effects of phenolic glucosides on the oviposition behavior ofEuura amerinae L. (Hymenoptera: Tenthredinidae) were tested in multiple oviposition experiments using different shoot length categories ofSalix pentandra L. (with different amounts of phenolic glucosides) and in experiments with pure phenolic glucosides (salidroside, arbutin, salicin, 90% salicortin, 90% 2′-O-acetylsalicortin) or composite total fractions of phenolic glucosides from three willow species (S. pentandra, S. myrsinifolia Salisb.,S. triandra L.). This was the first time that the effects of pure phenolic glucosides on the oviposition behavior of sawfly species were tested. Total fraction of phenolic glucosides fromS. pentandra and its main individual glucoside, 2′-O-acetyl-salicortin, stimulated the strongest ovipositional behavior inE. amerinae. The results show clearly that females ofE. amerinae can recognize and choose their host willow,S. pentandra, on the basis of phenolic glucosides. Moreover, they are probably able to use phenolic glucosides as a cue in shoot selection within host-plant individuals.

Key words

Herbivory host preference host selection oviposition phenolic glucosides willow Salicaceae Salix galling sawfly Hymenoptera Tenthredinidae Euura amerinae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson, R.B. 1958. Handbooks for the Identification of British Insects, Vol. VI, Part 2(c). Royal Entomological Society of London, London.Google Scholar
  2. Conover, W.J. 1980. Practical Nonparametric Statistics. Wiley, New York.Google Scholar
  3. Craig, T.P., Price, P.W., andItami, J.K. 1986. Resource regulation by a stem-galling sawfly on the arroyo willow.Ecology 67:419–425.Google Scholar
  4. Craig, T.P., Itami, J.K., andPrice, P.W. 1989. A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly.Ecology 70:1691–1699.Google Scholar
  5. Edwards, W.R.N. 1978. Effect of salicin content on palatability ofPopulus foliage to opossum (Trichosurnus vulpecula).N.Z. J. Sci. 21:103–106.Google Scholar
  6. Feeny, P. 1991. Chemical constraints on the evolution of swallowtail butterflies, pp. 315–340,in P.W. Price, T.M. Lewinsohn, G.W. Fernandes, and W.W. Benson (ed.). Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley, New York.Google Scholar
  7. Fraenkel, G.S. 1959. The raison d'etre of secondary plant substances.Science 129:1466–1470.PubMedGoogle Scholar
  8. Fritz, R.S., andPrice, P.W. 1988. Genetic variation among plants and insect community structure: Willows and sawflies.Ecology 69:845–856.Google Scholar
  9. Fritz, R.S., Sacchi, C.F., andPrice, P.W. 1986. Competition versus host plant phenotype in species composition: willow sawflies.Ecology 67:1608–1618.Google Scholar
  10. Fritz, R.S., Gaud, C.F., Sacchi, C.F., andPrice, P.W. 1987. Variation in herbivore density among host plants and its consequences for community structure: Field studies on willow sawflies.Oecologia 73:159–169.Google Scholar
  11. Futuyma, D.J. 1983a. Selective factors in the evolution of host choice by phytophagous insects, pp. 227–244,in S. Ahmad (ed.). Herbivorous Insects: Host-Seeking Behaviour and Mechanisms. Academic press, New York.Google Scholar
  12. Futuyma, D.J. 1983b. Evolutionary interactions among herbivorous insects and plants, pp. 207– D.J. Futuyma and M. Slatkin (eds.). Coevolution, Sinauer, Sunderland.Google Scholar
  13. Futuyma, D.J., Cort, R.P., andNoordwijk, I. 1984. Adaptation to host plants in the fall cankerworm (Alsophila pometaria) and its bearing on the evolution of host affiliation in phytophagous insects.Am. Nat. 123:287–296.Google Scholar
  14. Gauld, I., andBolton, B. 1988. The Hymenoptera. Oxford University Press, Oxford.Google Scholar
  15. Hämet-Ahti, L., andKyövuori, I. 1984. Salicaceae, pp. 159–172,in L. Hämet-Ahti, J. Suominen, T. Ulvinen, P. Uotila, and S. Vuokko (eds.). Retkeilykasvio. Suomen Luonnonsuojelun Tuki Oy, Helsinki.Google Scholar
  16. Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics.J. Agric. Food Chem. 33:213–217.Google Scholar
  17. Julkunen-Tiitto, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species.Phytochemistry 25:663–667.Google Scholar
  18. Julkunen-Tiitto, T. 1989A. Phenolic constituents ofSalix: A chemotaxonomic survey of further Finnish species.Phytochemistry 28:2115–2125.Google Scholar
  19. Julkunen-Tiitto, R. 1989b. Distribution of certain phenolics inSalix species (Salicaceae). PhD thesis. University of Joensuu, Joensuu.Google Scholar
  20. Kelly, M.T., andCurry, J.P. 1991. The influence of phenolic compounds on the suitability of threeSalix species as hosts for the willow beetlePhratora vulgatissima.Entomol. Exp. Appl. 61:25–32.Google Scholar
  21. Kolehmainen, J., Julkunen-Tiitto, R., Roininen, H., andTahvanainen, J. 1994. Phenolic glucosides as feeding cues for willow-feeding leaf beetles.Entomol. Exp. Appl. Submitted.Google Scholar
  22. Lindroth, R.L. 1991. Differential toxicity of plant allelo-chemicals to insects, roles of enzymatic detoxication systems. pp. 1–33,in E. Bernays (ed.). Insect-Plant Interactions, Vol. III. CRC Press, Boca Raton, Florida.Google Scholar
  23. Lindroth, R.L., Scriber, J.M., andHsia, M.T.S. 1988. Chemical ecology of tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.Google Scholar
  24. Markham, K.R. 1971. A chemotaxonomic approach to the selection of opossum resistant willows and poplars for use in soil conservation.N.Z.J. Sci. 14:179–186.Google Scholar
  25. Matsuda, K., andMatsuo, H. 1985. A flavonoid, luteolin-7-glucoside, as well as salicin and populin, stimulating the feeding of leaf beetles attacking salicaceous plants.Appl. Entomol. Zool. 20:305–313.Google Scholar
  26. Palo, R.T. 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores.J. Chem. Ecol. 10:499–520.Google Scholar
  27. Palo, R.T., Pehrson, Å., andKnutsson, P. 1984. Can birch phenolics be of importance in the defense against browsing vertebrates?Finn. Game Res. 412:75–80.Google Scholar
  28. Pasteels, J.M., Braekman, J.C., andDaloze, D. 1988a. Chemical defense in the Chrysomelidae, pp. 233–252,in P. Jolivet, E. Petitpierre, and T.H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer, Dordrecht.Google Scholar
  29. Pasteels, J.M., Rowell-Rahier, M., andRaupp, M.J. 1988b. Plant-derived defense in chrysomelid beetles, pp. 235–272,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. Wiley, New York.Google Scholar
  30. Price, P.W., Roininen, H., andTahvanainen, J. 1987a. Plant age and attack by the bud galler,Euura mucronata.Oecologia 73:334–337.Google Scholar
  31. Price, P.W., Roininen, H., andTahvanainen, J. 1987b. Why does the bud-galling sawfly,Euura mucronata, attack long shoots?Oecologia 74:1–6.Google Scholar
  32. Pschorn-Walcher, H. 1982. Unterordnung Symphyta: Pflanzenwespen, pp. 4–196,in W. Schwenke (ed.). Die Forstschädlinge Europas, 4. Band: Hautflügler und Zweiflügler. Parey, Hamburg.Google Scholar
  33. Rank, N.E. 1992. Host plant preference based on salicylate chemistry in a willow leaf beetle (Chrysomela aeneicollis).Oecologia 90:95–101.Google Scholar
  34. Roininen, H. 1991. Temporal change in the location of egg-laying by a bud-galling sawfly,Euura mucronata, on growing shoots ofSalix cinerea.Oecologia 87:265–269.Google Scholar
  35. Roininen, H., andTahvanainen, J. 1989. Host selection and larval performance of two willow-feeding sawflies.Ecology 70:129–136.Google Scholar
  36. Roininen, H., Vuorinen, J., Tahvanainen, J., andJulkunen-Tiitto, R. 1992. Host preference and allozyme differentiation in shoot galling sawfly,Euura atra.Evolution 47:300–308.Google Scholar
  37. Rowell-Rahier, M. 1984a. The presence or absence of phenolglycosides inSalix (Salicaceae) leaves and the level of dietary specilisation of some of their herbivorous insects.Oecologia 62:26–30.Google Scholar
  38. Rowell-Rahier, M. 1984b. The food plant preferences ofPhratora vitellinae (Coleoptera: Chrysomelidae): A. Field observations.Oecologia 64:369–374.Google Scholar
  39. Rowell-Rahier, M. 1984c. The food plant preferences ofPhratora vitellinae (Coleoptera: Chrysomelidae): B. A laboratory comparison of geographically isolated populations and experiments on conditioning.Oecologia 64:375–380.Google Scholar
  40. Rowell-Rahier, M., andPasteels, J.M. 1982. The significance of salicin for aSalix-feeder,Phratora (Phyllodecta) vitellinae, pp. 73–79,in J.H. Visser and A.K. Minks (eds.). Insect-Plant Relationships. Proceedings, 5th International Symposium on Insect-Plant Relationships, Wageningen.Google Scholar
  41. Rowell-Rahier, M., andPasteels, J.M. 1986. Economics of chemical defense in Chrysomelinae,J. Chem. Ecol. 12:1189–1203.Google Scholar
  42. Rowell-Rahier, M., Soetens, P., andPasteels, J.M. 1987. Influence of phenolglucosides on the distribution of herbivores on willows, pp. 91–95,in V. Labeyrie, G. Fabres and D. Lachaise (eds.). Insects-Plant Relationship. Proceedings, 6th International Symposium on Insect-Plant Relationships, Wageningen.Google Scholar
  43. Smiley, J.T., Horn, J.M., andRank, N.E. 1985. Ecological effects of salicin at three trophic levels: New problems from old adaptations.Science 229:649–651.Google Scholar
  44. Soetens, P., Rowell-Rahier, M., andPasteels, J.M. 1991. Influence of phenolglucosides and trichome density on the distribution of insect herbivores on willows.Entomol. Exp. Appl. 59:175–187.Google Scholar
  45. Sokal, R.R., andRohlf, J. 1981. Biometry: The Principles and Practice of Statistics in Biological Research. Freeman, San Francisco.Google Scholar
  46. Swain, T. 1979. Phenolics in the environment, pp. 617–640,in T. Swain, J.B. Harborne, and J.F. Van Sumere (eds.). Biochemistry of Plant Phenolics. Plenum Press, New York.Google Scholar
  47. Tahvanainen, J., Helle, H., Julkunen-Tiitto, R., andLavola, A. 1985a. Phenolic compounds of willow bark as deterrents against feeding by mountain hare.Oecologia 65:319–323.Google Scholar
  48. Tahvanainen, J., Julkunen-Tiitto, R., andKettunen, J. 1985b. Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles.Oecologia 67:52–56.Google Scholar
  49. Vickery, M.L., andVickery, B. 1981. Secondary Plant Metabolism. Macmillan Press, Hong Kong.Google Scholar
  50. Vikberg, V. 1970. The genusPontania O. Costa (Hymenoptera, Tenthredinidae) in the Kilpisjärvi district, Finnish Lapland.Ann. Entomol. Fenn. 36:10–23.Google Scholar
  51. Waring, G.L., andPrice, P.W. 1988. Consequences of host plant chemical and physical variability to an associated herbivore.Ecol. Res. 3:205–216.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jari Kolehmainen
    • 1
  • Heikki Roininen
    • 1
  • Riitta Julkunen-Tiitto
    • 1
  • Jorma Tahvanainen
    • 1
  1. 1.Department of BiologyUniversity of JoensuuJoensuuFinland

Personalised recommendations