Lasers in Medical Science

, Volume 6, Issue 2, pp 155–168 | Cite as

The propagation of optical radiation in tissue I. Models of radiation transport and their application

  • Michael S. Patterson
  • Brian C. Wilson
  • Douglas R. Wyman


This paper is the first of two reviewing the propagation of electromagnetic radiation of wavelength 0.25–10μm in tissue. After a brief discussion of light/tissue interactions, a mathematical description of light propagation in terms of radiative transfer is developed. Formal solutions of the resulting equation are outlined, but the emphasis is on approximate method of solution—namely the discrete ordinates method, the technique of functional expansion and Monte Carlo simulation. The application of the simplest of these approximate methods, namely the 2-flux and diffusion models, to tissue optics is discussed in some detail. The second paper deals with the optical properties of tissue and the salient characteristics of light fluence distributions in these tissues.

Key words

Light propagation Radiation transport Tissue optics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patterson MS, Wilson BC, Wyman DR. The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions.Lasers Med Sci (in press).Google Scholar
  2. 2.
    Boulnois JL. Photophysical processes in recent medical laser developments: a review.Lasers Med Sci 1986,1:47–66CrossRefGoogle Scholar
  3. 3.
    Ishimaru A.Wave propagation and scattering in random media. New York: Academic Press, 1978Google Scholar
  4. 4.
    Wilksch PA, Jacka F, Blake AJ. Studies of light propagation through tissue. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Liss, 1984, 149–61Google Scholar
  5. 5.
    Patterson MS, Wilson BC, Chance B. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.Appl Opt 1989,28:2331–6Google Scholar
  6. 6.
    Hansen JE, Travis LD. Light scattering in planetary atmospheres.Space Sci Rev 1974,16:527–613CrossRefGoogle Scholar
  7. 7.
    Svaasand LO, Gomer CJ. Optics in tissue. In: Muller GJ, Sliney DH (eds)Dosimetry of laser radiation in medicine and biology, Vol. IS-5. Bellingham: SPIE Optical Engineering 1990:114–32Google Scholar
  8. 8.
    Fante RL. Relationship between radiative-transport theory and Maxwell's equations in dielectric media.J Opt Soc Am 1981,71:460–8Google Scholar
  9. 9.
    Yoo KM, Liu F, Alfano RR. Biological materials probed by the temporal and angular profiles of the backscattered ultrafast laser pulses.J Opt Soc Am B 1990,7:1685–93Google Scholar
  10. 10.
    van de Hulst HC.Multiple light scattering tables, formulas and applications. New York: Academic Press, 1980Google Scholar
  11. 11.
    Jerlov NG.Marine Optics. Amsterdam: Elsevier, 1976Google Scholar
  12. 12.
    Duderstadt JJ, Hamilton LJ.Nuclear reactor analysis. New York: Wiley, 1976Google Scholar
  13. 13.
    Irvine WM. Multiple scattering in planetary atmospheres.Icarus 1975,25:175–204CrossRefGoogle Scholar
  14. 14.
    Hunt GE. A review of computational techniques for analysing the transfer of radiation through a model cloudy atmosphere.J. Quant Spectrosc Radiat Transfer 1971,11:665–90Google Scholar
  15. 15.
    van de Hulst HC, Irvine WM. General report on radiation transfer in planets: scattering in model planetary atmospheres.Mem Soc Roy Sci Liege 15th Ser 7 1962,78 Google Scholar
  16. 16.
    Irvine WM. The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere.Bull Astron Inst Neth 1964,17:266–79Google Scholar
  17. 17.
    Chandrasekhar S.Radiative transfer. New York: Dover, 1960Google Scholar
  18. 18.
    Sobolev VV.Light scattering in planetary atmospheres. Oxford: Pergamon, 1975Google Scholar
  19. 19.
    Case KM, Zweifel PF.Linear transport theory. Reading: Addison Wesley, 1967Google Scholar
  20. 20.
    van de Hulst.A new look at multiple scattering. Unnumbered mimeographed report, NASA Institute for Space Science, New York, 1963Google Scholar
  21. 21.
    Anderson RR, Hu J, Parrish JA. Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy. In Marks R, Payne PA (eds)Bioengineering and the skin. Lancaster: MTP, 1981:253–65Google Scholar
  22. 22.
    Ambartsumian VA.Dokl Akad Nauk SSSR 1943,38:257Google Scholar
  23. 23.
    Moaveni MK, Razani A. Application of invariant imbedding for the study of optical transmission and reflection by blood: Part I—Theory.Ind J Biochem Biophys 1974,11:25–9Google Scholar
  24. 24.
    Orchard SW. Reflection and transmission of light by diffusing suspensions.J Opt Soc Am 1969,59:1584–97Google Scholar
  25. 25.
    Mudgett PS, Richards LW. Multiple scattering calculations for technology.Appl Opt 1971,10:1485–502Google Scholar
  26. 26.
    Schuster A. Radiation through a foggy atmosphere.Astrophys J 1905,21:1–22CrossRefGoogle Scholar
  27. 27.
    Kubelka P, Munk F. Ein Beitrag zur Optik der Farbanstriche.Z Tech Phys 1931,12:593–601Google Scholar
  28. 28.
    Kubelka P. New contributions to the optics of intensely light-scattering materials, Part I.J Opt Soc Am 1948,38:448–57Google Scholar
  29. 29.
    van Gemert MJC, Star WM. Relations between the Kubelka-Munk and the transport equation models for anisotropic scattering.Lasers Life Sci 1987,1:287–98Google Scholar
  30. 30.
    Mudgett PS and Richards LW. Multiple scattering calculations for technology II.J Coll Interface Sci 1972,39:551–67CrossRefGoogle Scholar
  31. 31.
    Reichman J. Determination of absorption and scattering coefficients for nonhomogeneous media. 1. Theory.Appl Opt 1973,12:1811–5Google Scholar
  32. 32.
    Klier K. Absorption and scattering in plane parallel turbid media.J Opt Soc Am 1972,62:882–5Google Scholar
  33. 33.
    Brinkworth BJ. Interpretation of the Kubelka-Munk coefficients in reflection theory.Appl Opt 1972,11:1434–5Google Scholar
  34. 34.
    Meador WE, Weaver WR. Diffusion approximation for large absorption in radiative transfer.Appl Opt 1979,18:1204–8Google Scholar
  35. 35.
    Welch AJ, Yoon G, van Gemert MJC. Practical models for light distribution in laser-irradiated tissues.Lasers Surg Med 1987,6:488–93PubMedGoogle Scholar
  36. 36.
    Star WM, Marijnissen JPA, van Gemert MJC. Light dosimetry in optical phantoms and in tissues I. Multiple flux and transport theory.Phys Med Biol 1988,33:437–54CrossRefPubMedGoogle Scholar
  37. 37.
    Reynolds L, Johnson C, Ishimaru A. Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl Opt 1976,15:2059–67Google Scholar
  38. 38.
    Takatani S, Graham MD. Theoretical analysis of diffuse reflectance from a two-layer tissue model.IEEE Trans Biomed Eng 1979,BME-26:656–64PubMedGoogle Scholar
  39. 39.
    Hemenger RP. Optical properties of turbid media with specularly reflecting boundaries: applications to biological problems.Appl Opt 1977,16:2007–12Google Scholar
  40. 40.
    Groenhuis RAJ, Ferwerda HA, Ten Bosch JJ. Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory.Appl Opt 1983,22:2456–62Google Scholar
  41. 41.
    Jacques SL, Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation.Lasers Surg Med 1987,7:494–503Google Scholar
  42. 42.
    McKenzie AL. How may external and interstitial illumination be compared in laser photodynamic therapy:Phys Med Biol 1985,30:455–60CrossRefPubMedGoogle Scholar
  43. 43.
    Storchi PRM. Application of the Pn method to the calculation of the angular flux of gamma rays.J. Comp Phys 1984,55:81–97CrossRefGoogle Scholar
  44. 44.
    Moulton JD.Diffusion modelling of light propagation in turbid media. M. Eng. Thesis, McMaster University, Canada, 1990Google Scholar
  45. 45.
    Carter LL, Cashwell ED.Particle transport simulation with the Monte Carlo method. Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, 1975Google Scholar
  46. 46.
    Levitt LB. The use of self-optimized exponential biasing in obtaining Monte Carlo estimates of transmission probabilities.Nucl Sci Eng 1968,31:500–4Google Scholar
  47. 47.
    Wilson BC, Adam G. A Monte Carlo model for the absorption and flux distributions of light in tissue.Med Phys 1983,10:824–30CrossRefPubMedGoogle Scholar
  48. 48.
    Flock ST, Wilson BC, Patterson MS. Hybrid Monte Carlo—diffusion theory modelling of light distributions in tissue. In:Laser interaction with tissue, SPIE 1988,908:20–8Google Scholar
  49. 49.
    Peters VG, Wyman DR, Patterson MS, Frank GL. Optical properties of normal and diseased human tissue in the visible and near infrared.Phy Med Biol 1990,35:1317–34CrossRefGoogle Scholar
  50. 50.
    Wilson BC, Patterson MS, Flock ST, Wyman DR. Tissue optical properties in relation to models for light propagation and in vivo dosimetry. In: Chance B (ed.)Photon migration in tissue. New York: Plenum 1990, 24–42Google Scholar
  51. 51.
    Jacques SL. Time resolved propagation of ultrashort laser pulses within turbid tissues.Appl Opt 1989,28:2223–9Google Scholar
  52. 52.
    Hebden JC, Kruger RA. Transillumination imaging performance: spatial resolution simulation studies.Med Phys 1990,17:41–7CrossRefPubMedGoogle Scholar
  53. 53.
    Bonner RF, Nossal R, Havlin S, Weiss GH. Model for photon migration in turbid biological media.J Opt Soc Am A 1987,4:423–32PubMedGoogle Scholar
  54. 54.
    Nossal R, Kiefer J, Weiss GH et al. Photon migration in layered media.Appl Opt 1988,27:3382–91Google Scholar
  55. 55.
    Weiss GH, Nossal R, Bonner RF. Statistics of penetration depth of photons re-emitted from irradiated tissue.J Mod Optics 1989,36:349–59Google Scholar
  56. 56.
    Taitlebaum H, Havlin S, Weiss GH. Approximate theory of photon migration in a two-layer medium.Appl Opt 1989,28:2245–9Google Scholar
  57. 57.
    Chandrasekhar S. Stochastic problems in physics and astronomy.Rev Mod Phys 1943,15:1–88CrossRefGoogle Scholar
  58. 58.
    Herman M, Lenoble J. Asymptotic radiation in a scattering and absorbing medium.J Quant Spectrosc Radiat Transfer 1968,8:355–67CrossRefGoogle Scholar

Copyright information

© Baillière Tindall 1991

Authors and Affiliations

  • Michael S. Patterson
    • 1
  • Brian C. Wilson
    • 1
  • Douglas R. Wyman
    • 1
  1. 1.Hamilton Regional Cancer Centre and McMaster UniversityHamiltonCanada

Personalised recommendations