Skip to main content

Self-diffraction of CO2-laser radiation in SF6

Abstract

Self-diffraction of CO2-laser radiation (λ=10.51 μm) has been observed in gaseous SF6. Different orders of self-diffraction have been studied, up to the third. The amplification due to degenerate resonant multiphoton parametric processes has been measured to be as large as eight. The experimental estimates have been derived for the effective nonlinear susceptibilities (coefficients of nonlinear interaction) of the third, fifth, and seventh orders. The self-diffraction may essentially affect nonlinear processes including optical phase conjugation.

This is a preview of subscription content, access via your institution.

References

  1. D. L. STAEBLER and J. J. AMODEI,J. Appl. Phys. 43 (1972) 1042.

    Google Scholar 

  2. V. L. VINETSKY, N. V. KUHTAREV, S. G. ODULOV and M. S. SOSKIN,Uspekhi Fiz. Nauk (Sov.) 129 (1979) 113.

    Google Scholar 

  3. R. L. CARMAN, R. Y. CHIAO and R. L. KELLEY,Phys. Rev. Lett. 17 (1966) 1281.

    Google Scholar 

  4. P. A. Apanasevich and A. A. Afanasiev,Acad. Sci. BSSR Preprint IF, Minsk (1972).

  5. Idem., Opt. Spektrosk. 33 (1972) 300.

    Google Scholar 

  6. A. M. BONCH-BRUEVICH, S. G. PRZHIBELSKY, V. A. KHODOVOI and V. V. KHROMOV,Zhurn. Eksper. Teor. Fiz. (JETP) 65 (1973) 61.

    Google Scholar 

  7. P. A. Apanasevich and A. I. Urbanov, in ‘Quantum Electronics and Laser Spectroscopy’ (Nauk. Tekhn. Minsk, 1974) p. 426.

  8. V. I. STEPANOV, E. V. IVAKIN and S. A. RUBANOV,Dokl. Acad. Sci. USSR 196 (1971) 567.

    Google Scholar 

  9. A. YARIV,IEEE J. Quantum Electron. QE-14 (1978) 650.

    Google Scholar 

  10. R. C. LIND, D. G. STEEL, M. B. KLEIN, R. L. ABRAMS, C. R. GUILIANO and R. R. JAIN,Appl. Phys. Lett. 34 (1979) 457.

    Google Scholar 

  11. D. G. STEEL, R. C. LIND and J. F. LAM,Phys. Rev. A 23 (1981) 2513.

    Google Scholar 

  12. N. G. Basov, V. I. Kovalev, M. A. Musaev, and F. S. Faizullov, Preprint FIAN No. 204, Moscow, 1981.

  13. S. D. Balitsky and L. T. Bolotskikh, Preprint IFSO-178F, Krasnoyarsk 1981.

  14. L. T. BOLOTSKIKH and A. K. POPOV,Appl. Phys. B 31 (1983) 191.

    Google Scholar 

  15. D. A. GORYACHKIN, V. P. KALININ, I. A. KOMIN, I. M. PETROVA and N. A. ROMANOV,Opt. Spektrosk. 55 (1983) 1089.

    Google Scholar 

  16. P. A. APANASEVICH, A. A. AFANASIEV and B. A. SAMSON,Invest. Acad. Sci. USSR Ser. Phys. 45 (1981) 1416.

    Google Scholar 

  17. V. I. KOVALEV, A. R. LESIV, F. S. FAIZULLOV and V. B. FEDOROV,Probory Tekhn. Eksper. 1 (1983) 149.

    Google Scholar 

  18. G. R. MITCHEL, B. GREK, J. W. JOHNSON, F. MARTIN and H. PEPIN,Appl. Opt. 18 (1979) 2422.

    Google Scholar 

  19. V. M. FAIN, ‘Quantum Radiophysics’, Vol. 1 ‘Photons and Nonlinear Media’ (Soviet Radio, Moscow, 1972).

    Google Scholar 

  20. D. HANNA, M. YURATICH and D. COTTER, ‘Nonlinear Optics of Free Atoms and Molecules’ (Springer, Heidelberg New York-Berlin, 1979).

    Google Scholar 

  21. B. F. GORDIETS, A. I. OSIPOV and L. A. SHELEPIN, ‘Kinetic Processes in Gases and Molecular Lasers’ (Nauka, Moscow, 1980).

    Google Scholar 

  22. R. KOLIER, K. BERKHART and L. LIN, ‘Optical Holography’ (Mir, Moscow, 1973).

    Google Scholar 

  23. V. M. FEIN (ed.), ‘Nonlinear Properties of Solids’ (Mir, Moscow, 1972).

    Google Scholar 

  24. H. KILDAL and T. F. DEUTSCH,IEEE J. Quantum Electron. QE-12 (1976) 429.

    Google Scholar 

  25. P. F. MOULTON, D. M. LARSEN, J. W. WALPOLE and A. MOORADIAN,Opt. Lett. 1 (1977) 51.

    Google Scholar 

  26. S. S. ALIMPIEV, V. O. ZIKRIN, L. HOLZ, S. M. NIKIFOROV, V. V. SMIRNOV, V. G. SARTAKOV, V. I. FABELINSKY and A. L. SHTARKOV,Pisma JETP (Sov.) 38 (1983) 349.

    Google Scholar 

  27. J. I. STEINFELD, J. BURAK, D. G. SUTTON and A. W. NOWAK,J. Chem. Phys. 52 (1970) 5421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolotskikh, L.T., Popkov, V.G., Popov, A.K. et al. Self-diffraction of CO2-laser radiation in SF6 . Opt Quant Electron 18, 115–121 (1986). https://doi.org/10.1007/BF02032118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02032118

Keywords

  • Radiation
  • Communication Network
  • Nonlinear Interaction
  • Nonlinear Process
  • Experimental Estimate