Annals of Operations Research

, Volume 55, Issue 1, pp 139–178 | Cite as

Running time experiments on some algorithms for solving propositional satisfiability problems

  • Joachim Mayer
  • Ilse Mitterreiter
  • Franz Josef Radermacher
Knowledge And Structures: How To Represent, Handle, And Find Knowledge And Insight Into Structure


Satisfiability problems are of importance for many practical problems. They are NP-complete problems. However, some instances of the SAT problem can be solved efficiently. This paper reports on a study concerning the behaviour of a variety of algorithmic approaches to this problem tested on a set of problems collected at FAW. The results obtained give a lot of insight into the algorithms and problems, yet also show some general technical and methodological problems associated with such comparisons.


Logic programming performance of algorithms practical evaluation of algorithms propositional logic satisfiability problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Brayton, G.D. Hachtel, C.T. McMullen and A.L. Sangiovanni-Vincentelli,Logic Minimization Algorithms for VLSI Synthesis (Kluwer Academic, 1984).Google Scholar
  2. [2]
    R.E. Bryant, Graph based algorithms for Boolean function manipulation, IEEE Trans. Comp. C-35 (1986).Google Scholar
  3. [3]
    W. Buettner and H. Simonis, Embedding Boolean expressions into logic programming, J. Symbolic Comp. (1987) 191 205.Google Scholar
  4. [4]
    M. Buro and H. Kleine-Bünig, Report on a SAT Competition, Bericht Nr. 110, Reihe Informatik, Universität Paderborn (1992).Google Scholar
  5. [5]
    J. Cohen, Constraint logic programming languages, Commun. ACM 33 (1990) 52–68.Google Scholar
  6. [6]
    A. Colmerauer, An introduction to Prolog III. Commun. ACM 33 (1990) 69–90.Google Scholar
  7. [7]
    ESPRIT P1106 Consortium. Final Report Part 1 (January 1990).Google Scholar
  8. [8]
    K. Estenfeld et al., PROLOG-XT, Corporate Research and Development, Research Laboratories for Applied Computer Science and Software Information and Knowledge Processing, Siemens Confidential.Google Scholar
  9. [9]
    F. Harche, J.N. Hooker and G.L. Thompson. A computational study of satisfiability algorithms for propositional logic, Management Science Research Report MSRR-567, Carnegie Mellon University (1991).Google Scholar
  10. [10]
    J.N. Hooker, A quantitative approach to logical inference, Dec. Support Syst. 4 (1988) 45–69.Google Scholar
  11. [11]
    J.N. Hooker and C. Fedjki, Branch-and-cut solution of inference problems in propositional logic, Ann. Math. Art. Int. 1 (1990) 123–139.Google Scholar
  12. [12]
    R.G. Jeroslow and J. Wang, Solving propositional satisfiability problems, Ann. Math. Art. Int. 1 (1990) 167–187.Google Scholar
  13. [13]
    U. Martin and T. Nipkow, Boolean unification - the story so far, J. Symbolic Comp. 7 (1989) 275–293.Google Scholar
  14. [14]
    M. Meier et al., SEPIA — an extendible Prolog system,Proc. 11th World Computer Progress IFIP'89, San Francisco (August, 1989).Google Scholar
  15. [15]
    G. Patrizi, The equivalence of an LCP to a parametric linear program with a scalar parameter, Euro. J. Oper. Res. 51 (1991) 367–386.Google Scholar
  16. [16]
    S. Rudeanu,Boolean Functions and Equations (North-Holland, Amsterdam, London, 1974).Google Scholar
  17. [17]
    K. Sakai and Y. Sato, Boolean Groebner bases, Technical report, ICOT, Tokyo, Japan (June 1988).Google Scholar
  18. [18]
    U. Schöning,Logik für Informatiker, Reihe Informatik, Bd. 56, 2. Auflage (BI-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1989).Google Scholar
  19. [19]
    P. Siegel, Represèntation et utilisation de la connaissance en calcul propositionnel, Thèse de doctorat d'Etat, GIA, Faculté des Sciences de Luminy, Université Aix-Marseille (July 1987).Google Scholar
  20. [20]
    J.H. Siekmann, Universal unification,7th Int. Conf. on Automated Deduction, Napa Valley, CA (1984) pp. 1–42.Google Scholar
  21. [21]
    H. Simonis and M. Dincbas, Propositional calculus problems in CHIP, in:Proc. 2nd Int. Conf. on Algebraic and Logic Programming (1990).Google Scholar
  22. [22]
    C. Spera, Computational results for solving large general satisfiability problems, University of Siena, Department of Mathematics, Rapporto Matematico N. 222 (August 1990).Google Scholar
  23. [23]
    G.J. Sussman and G.L. Steele, CONSTRAINTS — a language for expressing almost-hierarchical descriptions, Art. Int. J. 14 (1980).Google Scholar
  24. [24]
    K. Trümper and F.J. Radermacher, Analyse der Leistungsfähigkeit eines neuen Systems zur Auswertung aussagenlogischer Probleme, FAW-TR-90003, Version 1 (February 1990).Google Scholar
  25. [25]
    P. Van Hentenryck,Constraint Satisfaction in Logic Programming, Logic Programming Series (MIT Press, Cambridge, MA, 1989).Google Scholar
  26. [26]
    J. Wang, Rule-based expert systems and discrete optimization, Thesis, Georgia Institute of Technology (July 1990).Google Scholar
  27. [27]
    L. Wos, R. Overbeek, E. Lusk and J. Boyle,Automatical Reasoning (Prentice-Hall, Englewood Cliffs, NJ, 1984).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Joachim Mayer
    • 1
  • Ilse Mitterreiter
    • 2
  • Franz Josef Radermacher
    • 1
  1. 1.Forschungsinstitut für anwendungsorientierte Wissensverarbeitung (FAW)UlmGermany
  2. 2.Lehrstuhl für Wirtschaftsinformatik, Wirtschaftswissenschaftliche FakultätUniversität PassauPassauGermany

Personalised recommendations