Optical and Quantum Electronics

, Volume 18, Issue 3, pp 219–228 | Cite as

Light propagation in a planar dielectric slab waveguide with step discontinuities

Part 1 operator formalism
  • W. Biehlig
  • K. Hehl
  • U. Langbein
  • F. Lederer
Article

Abstract

The common matrix formalism for multi-layer systems is generalized to describe the optical field propagation along an arbitrary cascade of step discontinuities in a planar dielectric waveguide. The reflection and transmission properties of the step cascade are modelled by rigorous operator relations in a Hilbert-space calculus. In this way the complete propagation problem is reduced to two basic transformations. TE- and TM-polarized fields are treated simultaneously.

Keywords

Propagation Problem Matrix Formalism Operator Relation Light Propagation Optical Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. MARCUSE,Bell. Syst. Tech. J. 49 (1970) 273.Google Scholar
  2. 2.
    P. GELIN, M. PETENZI and J. CITERNE,Electron. Lett. 15 (1979) 355.Google Scholar
  3. 3.
    S. YU. KARPOV,Kvant. Electr. 9 (1982) 605.Google Scholar
  4. 4.
    V. RAMASWAMY and P. G. SUCHOTSKI,J. Opt. Soc. Am. B1 (1984) 754.Google Scholar
  5. 5.
    K. MORISHITA, S. INAGAKI and N. KUMAGAI,IEEE Trans. Microwave Theory Tech. MTT-27 (1979) 310.CrossRefGoogle Scholar
  6. 6.
    M. A. A. PUDENSI and L. G. FERREIRA,J. Opt. Soc. Am. 72 (1982) 126.Google Scholar
  7. 7.
    S. F. MAHMOUD and J. C. BEAL,IEEE Trans. Microwave Theory Tech. MTT-23 (1975) 193.CrossRefGoogle Scholar
  8. 8.
    T. E. ROZZI,ibid. MTT-26 (1978) 738.CrossRefGoogle Scholar
  9. 9.
    T. E. ROZZI and G. H. IN'T VELD,ibid. MTT-27 (1979) 303–9.CrossRefGoogle Scholar
  10. 10.
    G. H. BROOKE and M. M. Z. KHARADLY,Electron. Lett. 12 (1976) 473.Google Scholar
  11. 11.
    Idem, IEEE Trans. Microwave Theory Tech. MTT-30 (1980) 760.Google Scholar
  12. 12.
    G. I. Stegeman, A. A. Maradudin and T. S. Rahman, Technical Report no. 80-62, University of California, Irvine.Google Scholar
  13. 13.
    R. F. WALLIS, A. A. MARADUDIN and G. I. STEGEMAN,Appl. Phys. Lett. 42 (1983) 764.CrossRefGoogle Scholar
  14. 14.
    S. SAWA, K. ONO, H. ODANAKA and M. SAKUMA,Trans. IECE Jpn J63-C (1980) 104.Google Scholar
  15. 15.
    T. HOSONO, T. HINATA and A. INOUE,Radio Sci. 17 (1982) 75.Google Scholar
  16. 16.
    M. SUZUKI and M. KOSHIBA,ibid. 17 (1982) 85.Google Scholar
  17. 17.
    T. NOBUYOSHI, N. MORITA and N. KUMAGAI,Trans. IECE Jpn J66-C (1983) 828.Google Scholar
  18. 18.
    Idem, IEEE J. Lightwave Tech. LT-1 (1983) 374.Google Scholar
  19. 19.
    P. G. COTTIS and N. K. UZUNOGLU,J. Opt. Soc. Am. 81 (1984) 206.Google Scholar
  20. 20.
    H. M. DE RUITER,Radio Sci. 19 (1984) 1295.Google Scholar
  21. 21.
    M. BORN and E. WOLF, ‘Principles of Optics’ (Pergamon, London, New York, Paris, Los Angeles, 1959) pp. 50–69.Google Scholar
  22. 22.
    K. HEHL and W. WESCH,Phys. Status Solidi (a) 58 (1980) 181.Google Scholar
  23. 23.
    D. MARCUSE, ‘Theory of Dielectric Optical Waveguides’ (Academic, New York, 1974) pp. 9–30.Google Scholar
  24. 24.
    G. LUDWIG, ‘Einführung in die Grundlagen der Theoretischen Physik’, Vol. 3, ‘Quantentheorie’ (Vieweg, Braunschweig, 1976) Ch. 3, pp. 109–37.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • W. Biehlig
    • 1
  • K. Hehl
    • 1
  • U. Langbein
    • 1
  • F. Lederer
    • 1
  1. 1.Department of PhysicsUniversity of JenaJenaGermany

Personalised recommendations