Advertisement

Lasers in Medical Science

, Volume 6, Issue 3, pp 241–254 | Cite as

Biophysics of the photoablation process

  • G. Müller
  • K. Dörschel
  • H. Kar
Article

Abstract

Besides the coagulation, where the body digests the necrotic tissue and direct evaporation of tissue, the photoablation effect turns out to be very important in tissue removal.

In the case of high tissue absorption the process channels in photoablation can either be photochemical (bond breaking) or fast thermal. In the case of transparent media, a plasma formation due to high irradiances and an optical breakdown is necessary for ablation or photodisruption.

All the process channels lead to a fast microscale explosion and to Shockwaves. For soft tissue the main process channel is the fast thermal explosion.

Assuming that tissue will be disintegrated, if the energy deposited within a single laser pulse is larger than a material specific threshold, the thresholds for the radiant exposure and ablation rates respectively can be calculated.

There is a large difference, whether the laser radiation is applied to the tissue surface in noncontact or through a fibre in contact. In contact the ‘fast thermal explosion’ happens in a closed chamber and hence the photohydraulic effect will support the photoablation.

The thermally damaged zone in the surrounding tissue depends on the optical penetration depth mainly in cases that the pulse duration is shorter than a critical time given by the heat conductivity. Pulsed lasers can be used ‘non-thermally’ only if the average power is less than a tenth of a watt. With a higher amount of average power a pulsed laser will act comparable to a cw laser.

Laser angioplasty Photoablation Photohydraulic effect Fast thermal explosion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller G, Berlien H-P. Lasers in medicine-technical state and prospects. In:Lasers in Cardiovascular Diseases, International Symposium, Baden, Vienna, EBM, 1986:9–13Google Scholar
  2. 2.
    Boulnois J-L. Photophysical processes in recent medical laser developments: a review.Lasers Med Sci 1986,1:47–64CrossRefGoogle Scholar
  3. 3.
    Srinivasan R. Self-developing photoetching of poly films by far ultraviolet excimer, laser radiation.App Phys Lett 1982,4(6):576–8CrossRefGoogle Scholar
  4. 4.
    Sliney D. Laser-tissue interactions.Clin Chest Med 1985,6:203–8PubMedGoogle Scholar
  5. 5.
    Berlien HP, Müller G.Angewandte Lasermedizin, Lehr- und Handbuch für Praxis und Klinik. Ecomed, Landsberg, 1989Google Scholar
  6. 6.
    Star W. Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry. In:Dosimetry of Laser Radiation in Medicine and Biology. SPIE Institutes for Advanced Optical Technologies, 1989,IS5:146–54Google Scholar
  7. 7.
    Müller G, Schaldach B. Basic laser tissue interaction. In:Safety and Laser Tissue Interaction, Advances in Lasermedicine II. Ecomed, Landsberg, 1989:17–25Google Scholar
  8. 8.
    Bloembergen N. Laser-induced electric breakdown in solids.J Quant Electr 1974,QF-10(3):375–86CrossRefGoogle Scholar
  9. 9.
    Harnoss B-M, Kar H, Zühlke H et al. A comparative study on the physical aspects of the ablation behavior of short-pulsed laser in arteriosclerotic vessels in vitro.Lasers Surg Med 1990,6(3): 105–10Google Scholar
  10. 10.
    Walsh J, Deutsch T. Er:YAG laser ablation of tissue: measurement of ablation rates.Lasers Surg Med 1989,9:327–37PubMedGoogle Scholar
  11. 11.
    Walsh J, Deutsch T. Pulsed CO2 laser tissue ablation: measurement of the ablation rates.Lasers Surg Med 1988,8:264–75PubMedGoogle Scholar
  12. 12.
    Müller G, Berlien H-P, Biamino B et al. Photoablation threshold of human aorta as a function of wavelength. In:Laser Optoelectronics in Medicine, Proceedings of the 7th Congress of the International Society for Laser Surgery and Medicine, Springer, 1988:38–41Google Scholar
  13. 13.
    Kar H, Dörschel K, Müller G et al. Optimization of the coupling of excimer laser radiation (308 nm) into Q-Q fibres ranging from 200–600μm core diameter. InOptical Fibers in Medicine IV, Proceedings of SPIE, 1989,1067:223–32Google Scholar
  14. 14.
    Taylor R. Effect of optical pulse duration on the XeCl laser ablation of polymers and biological tissue.CLEO 1987, 268–9Google Scholar
  15. 15.
    Yeh J. Laser ablation of polymers.J Vac Sci Technol 1986,A4(3):653–8Google Scholar
  16. 16.
    Dörschel K, Müller G. Dosimetry for photoablation technique. In:Dosimetry of Laser Radiation in Medicine and Biology, SPIE Institutes for Advanced Optical Technologies, 1989,IS5:146–54Google Scholar
  17. 17.
    Hibst R, Keller U. Experimental studies of the application of the Er:YAG Laser on dental hard substances: I. Measurement of the ablation rate.Lasers Surg Med 1989,9:338–44PubMedGoogle Scholar
  18. 18.
    Zweig A, Weber H. Mechanical and thermal parameters in pulsed laser cutting of tissue.IEEE J Quant Electr 1987,QE23(10):1787–93CrossRefGoogle Scholar
  19. 19.
    Rox R, Anderson BS, Parrisch JA. The optics of human skin.J Invest Dermatol 1981,77:13–9CrossRefPubMedGoogle Scholar
  20. 20.
    Esterowitz L, Hoffman CA, Tran DC et al. Angioplasty with a laser and fiber optics at 2.94μm. In:Optical and Laser Technology in Medicine, SPIE 1986, 605:32–6Google Scholar
  21. 21.
    Küper S, Stuke M. Femtosecond uv excimer laser ablation.Appl Phys B 1987,44:199–204CrossRefGoogle Scholar
  22. 22.
    Jaques S. Time resolved propagation of ultrashort laser pulses with turbid tissue.Appl Opt 1989,28:2223–9CrossRefGoogle Scholar
  23. 23.
    Shrinivasan R, Casey K. Sub-nanosecond probing of the ablation of soft plaque from arterial wall by laser pulses delivered through a fiber.IEEE J Quant Electr 1991, to be publishedGoogle Scholar
  24. 24.
    Grothues-Spork M. Vergleich der knochenheilung nach sägeosteomie, CO2-laserosteomie und excimerlaserosteomie am röhrenknochen des kaninchen. Dissertation, Freie Universität, 1990Google Scholar
  25. 25.
    Walsh J, Flotte T, Deutsch T. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage.Lasers Surg Med 1989,9:314–26PubMedGoogle Scholar
  26. 26.
    Furzikov N. Different lasers for angioplasty: termooptical comparison.IEEE J Quant Electr 1987,QE-23:1751–5CrossRefGoogle Scholar
  27. 27.
    Müller-Stolzenburg N, Buchwald HJ, Müller G et al. In-vitro Untersuchungen zur refraktiven hornhautchirurgie mit dem excimer-laser über glasfaser.Fortschritte der Ophtalmologie 1989,86:592–6Google Scholar

Copyright information

© Baillière Tindall 1991

Authors and Affiliations

  • G. Müller
    • 1
  • K. Dörschel
    • 1
  • H. Kar
    • 1
  1. 1.Laser Medizin ZentrumBerlinGermany

Personalised recommendations